Advertisement

Applied Physics A

, 124:126 | Cite as

2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

  • Zhizhen Ma
  • Rohit Hemnani
  • Ludwig Bartels
  • Ritesh Agarwal
  • Volker J. Sorger
Article
  • 296 Downloads

Abstract

Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene’s Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

Notes

Acknowledgements

V.S., L.B are supported by the National Science Foundation under award number NSF DMREF 1436330. V.S. and R.A. are supported by the Army Research Office under contract number W911NF-16-2-0194.

References

  1. 1.
    S.K. Pickus, S. Khan, C. Ye, Z. Li, V.J. Sorger, Silicon plasmon modulators: breaking photonic limits. IEEE Photon. Soc. 27, 6 (2013)Google Scholar
  2. 2.
    K. Liu, Z.R. Li, S. Khan, C. Ye, V.J. Sorger, Ultra-fast electro-optic modulators for high-density photonic integration. Laser Photon. Rev. 10, 11–15 (2015)Google Scholar
  3. 3.
    R. Amin, C. Suer, Z. Ma, J. Khurgin, R. Agarwal, V.J. Sorger, Active material, optical mode and cavity impact on electro-optic modulation performance. Nanophotonics 7(2), 455–472 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Amin, C. Suer, Z. Ma, J. Khurgin, R. Agarwal, V.J. Sorger, A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance. Solid-State Electron. (2017).  https://doi.org/10.1016/j.sse.2017.06.024 (Special Issue)Google Scholar
  5. 5.
    K. Liu, A. Majumdar, V.J. Sorger, Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Ma, M.H. Tahersima, S. Khan, V.J. Sorger, Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J. Sel. Top. Quantum Electron. 23(1), 1–8 (2017)CrossRefGoogle Scholar
  7. 7.
    M.H. Tahersima et al., Testbeds for transition metal dichalcogenide photonics: efficacy of light emission enhancement in monomer vs. dimer nanoscale antennas. ACS Photon. 4, 1713–1721 (2017)CrossRefGoogle Scholar
  8. 8.
    D.A.B. Miller, Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012)Google Scholar
  9. 9.
    H.T. Lin, O. Ogbuu, J. Liu, L. Zhang, J. Michel, J.J. Hu, Breaking the energy-bandwidth limit of electrooptic modulators: theory and a device proposal. J. Lightwave Technol. 31, 4029–4036 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Martinez et al., Transport properties of CVD grown TMDs on Flat and patterned substrates. In: APS March Meeting Abstracts (2015)Google Scholar
  11. 11.
    J. Mann et al., Facile growth of monolayer MoS2 film areas on SiO2. Eur. Phys. J. B 86(5), 226 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S. van der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1(1), 011002 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Sun et al., The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area- efficient on-chip interconnects. IEEE Photon. J. 7, 1–14 (2015)Google Scholar
  14. 14.
    N. Li et al., Nano III–V plasmonic light-sources for monolithic integration on silicon. Nature Sci. Rep. 5, 14067 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    K. Liu, V.J. Sorger, An electrically-driven carbon nanotube-based plasmonic laser on Silicon. Opt. Mater. Express 5, 1910–1919 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Liu, N. Li, D.K. Sadana, V.J. Sorger, Integrated nano-cavity plasmon light-sources for on-chip optical interconnects. ACS Photon. 3, 233–242 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Fratalocchi et al., Nano-optics gets practical: plasmon modulators. Nat. Nanotechnol. 10, 11–15 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4, 1 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    J.K. George, V.J. Sorger, Graphene-based solitons for spatial division multiplexed switching. Opt. Lett. 42(4), 787–790 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    B. Lee, W. Liu, C.H. Naylor, J. Park, S. Malek, J. Berger, A.T.C. Johnson, R. Agarwal, Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nanoletters 17, 4541–4547 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringGeorge Washington UniversityWashingtonUSA
  2. 2.Chemistry and Materials Science and EngineeringUniversity of CaliforniaRiversideUSA
  3. 3.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations