Applied Physics A

, 124:106 | Cite as

The Talbot effect in a metamaterial

  • H. NikkhahEmail author
  • M. Hasan
  • T. J. Hall


The effect of anisotropy and spatial dispersion of a metamaterial on the Talbot effect may be engineered in principle. This has profound implications for applications of the Talbot effect such as the design of a multimode interference coupler (MMI). The paper describes how a metamaterial can suppress the modal phase error which otherwise limits the scaling of MMI port dimension. A binary multilayer dielectric material described by the Kronig–Penney model is shown to provide a close approximation to the required dispersion relation. Results of simulations of a multi-slotted waveguide MMI engineered to provide a polarising beam splitter function are given as an example of the method.


  1. 1.
    D.A.B. Miller, Silicon photonics: Meshing optics with applications. Nat. Photonics 11, 403–404 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    T.J. Hall, M. Hasan, Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24(7), 7600–7610 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    H. Nikkhah, T.J. Hall, Subwavelength grating waveguides for integrated photonics. Appl. Phys. A 122(4), 1–6 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Nikkhah, T.J. Hall, Metamaterial Lüneburg lens for Fourier optics on-a-chip. Proc. SPIE OPTO, Integrated Optics: Devices, Materials, and Technologies, Photonics, West San Francisco (2014), 89880J–89880JGoogle Scholar
  5. 5.
    A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho et al., Wavelength independent multimode interference coupler. Opt. Express 21(6), 7033–7040 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    L. Auslander, R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. 1(6), 847–897 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H. Nikkhah, Q. Zheng, I. Hassan, S. Abdul-Majid, T.J. Hall, The Free Space and Waveguide Talbot Effect: Phase Relations and Planar Light Circuit Applications. (Photonics North, Montreal, 2012), pp 841217–841217Google Scholar
  8. 8.
    J.Z. Huang, R. Scarmozzino, R.M. Osgood, A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers. IEEE Photonics Technol. Lett. 10(9), 1292–1294 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    A. Molina-Fernandez, J.G. Ortega-Moñux, Wangüemert-Pérez, Improving multimode interference couplers performance through index profile engineering. J. Lightwave Technol. 27(10), 1307–1314 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    R. Halir, G. Roelkens, A. Ortega-Moñux, J.G. Wangüemert-Pérez, High-performance 90 hybrid based on a silicon-on-insulator multimode interference coupler. Opt. Lett. 36(2), 178–180 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo et al., High-performance multimode interference coupler in silicon waveguides with subwavelength structures. IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos et al., Integrated polarization beam splitter with relaxed fabrication tolerances. Opt. Express 21(12), 14146–14151 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    R. Halir, P. Cheben, J.M. Luque-González, J.D. Sarmiento-Merenguel et al., Ultra-broadband nanophotonic beam splitter using an anisotropic sub-wavelength metamaterial. Laser Photonics Rev. 10(6), 1039–1046 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Jahani, Z. Jacob, Transparent subdiffraction optics: nanoscale light confinement without metal. Optica 1(2), 96–100 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Wolf, Fourier transform in metaxial geometric optics. JOSA A 8(9), 1399–1403 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    D. Landau, E.M. Lifshitz, Course of Theoretical Physics. Electrodynamics of Continuous Media. Oxford, 1960Google Scholar
  17. 17.
    A. Markel, I. Tsukerman, Current-driven homogenization and effective medium parameters for finite samples. Phys. Rev. B 88(12), 125131 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Iwanow, D.A. May-Arrioja, D.N. Christodoulides, G.I. Stegeman, Y. Min, W. Sohler, Discrete Talbot effect in waveguide arrays. Phys. Rev. Lett. 95(5), 053902 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    L. Garanovich, A.A. Sukhorukov, Y.S. Kivshar, Broadband diffraction management and self-collimation of white light in photonic lattices. Phys. Rev. E 74(6), 066609 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    K. Patorski, I the self-imaging phenomenon and its applications. Progress Opt. 27, 1–108 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    H.F. Talbot, LXXVI. Facts relating to optical science. No. IV. Lond. Edinb. Philos. Mag. J. Sci. 9(56) 401–407 (1836)Google Scholar
  22. 22.
    L. Rayleigh, XXV. On copying diffraction-gratings, and on some phenomena connected therewith. Lond. Edinb. Dublin Philos. Mag. J. Sci. 11(67) 196–205 (1881)CrossRefGoogle Scholar
  23. 23.
    R.D.L. Kronig, W.G. Penney, Quantum mechanics of electrons in crystal lattice. Proc. R. Soc. Lond. Ser. A 130, 499–513 (1930)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    P. Yeh, A. Yariv, C.S. Hong, Electromagnetic propagation in periodic stratified media. I. General theory. JOSA 67(4) 423–438 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations