Applied Physics A

, 124:113 | Cite as

Hybrid photonic–plasmonic crystal nanocavity sensors

  • Pi-Ju Cheng
  • Chih-Kai Chiang
  • Bo-Tsun Chou
  • Zhen-Ting Huang
  • Yun-Cheng Ku
  • Mao-Kuen Kuo
  • Jin-Chen Hsu
  • Tzy-Rong LinEmail author


We have investigated a hybrid photonic–plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10− 3 (λ/neff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/Vm is significantly enhanced by about 15 times. The designed hybrid photonic–plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light–matter interaction, such as biosensors and nanolasers.



Prof Tzy-Rong Lin expresses his deepest gratitude to his Father, Mr. Hsing-Chung Lin, for his cultivating parenting, and frequently encouraging during his research, and shows his endless love to his Father by this paper. Dr. Pi-Ju Cheng would like to acknowledge Prof. Shu-Wei Chang for his insightful discussion and proofreading the manuscript. This work is supported by Ministry of Science and Technology (MOST), Taiwan (Grant no.: MOST 105-2221-E-019-049-MY3, MOST 103-2221-E-224-002-MY3 and MOST 105-2221-E-002-079).


  1. 1.
    Y. Yamamoto, R.E. Slusher, Optical processes in microcavities, (Springer, Boston, MA, 1995) pp. 871–878Google Scholar
  2. 2.
    K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    L. He, A.K. Zdemir, J. Zhu, W. kim, L. Yang, Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M.R. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15, 4530–4535 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Q. Li, Z. Li, N. Li, X. Chen, P. Chen, X. Shen, W. Lu, High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 4, 6332 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Li, J.-L. Kou, M. Kim, J.O. Lee, H. Choo, Highly efficient and tailorable on-chip metal-insulator-metal plasmonic nanofocusing cavity. ACS Photonics 1, 944–953 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Cui, X. Zhang, T.-L. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, E.L. Hu, Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond. ACS Photonics 2, 465–469 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Wang, B. Palpant, Large and ultrafast optical response of a one-dimensional plasmonic-photonic cavity. Plasmonics 8, 1647–1653 (2013)CrossRefGoogle Scholar
  9. 9.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    S.-W. Chang, C.-Y. Lu, S.L. Chuang, T.D. Germann, U.W. Pohl, D. Bimberg, Theory of metal-cavity surface-emitting microlasers and comparison with experiment. IEEE J. Sel. Top. Quantum Electron 17, 1681–1692 (2011)CrossRefGoogle Scholar
  11. 11.
    C.-Y. Lu, S.-W. Chang, S.L. Chuang, T.D. Germann, D. Bimberg, Metal-cavity surface-emitting microlaser at room temperature. Appl. Phys. Lett. 96, 251101 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Lakhani, M.-K. Kim, E.K. Lau, M.C. Wu, Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    T.-L. Liu, K.J. Russell, S. Cui, E.L. Hu, Two-dimensional hybrid photonic/plasmonic crystal cavities. Opt. Express 22, 8219–8225 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Y.-J. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M.I. Stockman, C.-K. Shih, S. Gwo, All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett. 14, 4381–4388 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M.J.H. Marell, B. Smalbrugge, E.J. Geluk, P.J.V. Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M.K. Smit, M.T. Hill, Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express 19, 15109–15118 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 21, 1110–1112 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R.F. Oulton, Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15, 26–34 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Zhu, J. Zhang, J. Xu, D. Yu, Vertical plasmonic resonant nanocavities. Nano Lett. 11, 1117–1121 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-H. Chou, Y.-M. Wu, K.-B. Hong, B.-T. Chou, J.-H. Shih, Y.-C. Chung, P.-Y. Chen, T.-R. Lin, C.-C. Lin, S.-D. Lin, T.-C. Lu, High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett. 16, 3179–3186 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    H. Jiang, C. Liu, P. Wang, D. Zhang, Y. Lu, H. Ming, High-Q/V eff gap-mode plasmonic FP nanocavity. Opt. Express 21, 4752–4757 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    P.-J. Cheng, C.-Y. Weng, S.-W. Chang, T.-R. Lin, C.-H. Tien, Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding. Opt Express 21, 13479–13491 (2013)Google Scholar
  22. 22.
    Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, T.-C. Lu, Ultrastrong mode confinement in ZnO surface plasmon nanolasers. ACS Nano 9, 3978–3983 (2015)CrossRefGoogle Scholar
  23. 23.
    Y.-C. Chung, P.-J. Cheng, Y.-H. Chou, B.-T. Chou, K.-B. Hong, J.-H. Shih, S.-D. Lin, T.-C. Lu, T.-R. Lin, Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers. Sci. Rep. 7, 39813 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    X. Yang, A. Ishikawa, X. Yin, X. Zhang, Hybrid photonic-plasmonic crystal nanocavities. ACS Nano 5, 2831–2838 (2011)CrossRefGoogle Scholar
  25. 25.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light. (Princeton university press, Princeton, 2011)zbMATHGoogle Scholar
  26. 26.
    T.-R. Lin, S.-W. Chang, S.L. Chuang, Z. Zhang, P.J. Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna. Appl. Phys. Lett. 97, 063106 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S.Y. Lee, L. Hung, G.S. Lang, J.E. Cornett, I.D. Mayergoyz, O. Rabin, Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 4, 5763–5772 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Sun, K.-H. Su, J. Valentine, Y.T. Rosa-Bauza, J.A. Ellman, O. Elboudwarej, B. Mukherjee, C.S. Craik, M.A. Shuman, F.F. Chen, X. Zhang, Time-resolved single-step protease activity quantification using nanoplasmonic resonator sensors. ACS Nano 4, 978–984 (2010)CrossRefGoogle Scholar
  29. 29.
    J. McPhillips, A. Murphy, M.P. Jonsson, W.R. Hendren, R. Atkinson, F. Hook, A.V. Zayats, R.J. Pollard, High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4, 2210–2216 (2010)CrossRefGoogle Scholar
  30. 30.
    K. Hakuta, K.P. Nayak, Manipulating single atoms and photons using optical nanofibers. Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 015005 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Christesen, C.W. Pinion, E.M. Grumstrup, J.M. Papanikolas, J.F. Cahoon, Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13, 6281–6286 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    F. Vollmer, L. Yang, Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1, 267–291 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    D. Benelarbi, T. Bouchemat, M. Bouchemat, Design of high-sensitive refractive index sensor using a ring-shaped photonic crystal waveguide. Nanosci. Nanotechnol. 6(1A), 105–109 (2016)Google Scholar
  34. 34.
    B. Wawng, G.P. Wang, Plasmon bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. 87, 013107 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pi-Ju Cheng
    • 1
  • Chih-Kai Chiang
    • 2
  • Bo-Tsun Chou
    • 3
  • Zhen-Ting Huang
    • 4
  • Yun-Cheng Ku
    • 5
  • Mao-Kuen Kuo
    • 5
  • Jin-Chen Hsu
    • 6
  • Tzy-Rong Lin
    • 2
    • 4
    Email author
  1. 1.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
  2. 2.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.ATD DeviceUnited Microelectronics CorporationHsinchuTaiwan
  4. 4.Department of Mechanical and Mechatronic EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
  5. 5.Institute of Applied MechanicsNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Mechanical EngineeringNational Yunlin University of Science and TechnologyYunlinTaiwan

Personalised recommendations