Applied Physics A

, 124:72 | Cite as

The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient

  • L. BassoEmail author
  • F. Gorrini
  • N. Bazzanella
  • M. Cazzanelli
  • C. Dorigoni
  • A. Bifone
  • A. Miotello


Nanodiamonds have attracted considerable interest for their potential applications in quantum computation, sensing, and bioimaging. However, synthesis of nanodiamonds typically requires high pressures and temperatures, and is still a challenge. Here, we demonstrate production of nanodiamonds by pulsed laser ablation of graphite and diamond-like carbon in water. Importantly, this technique enables production of nanocrystalline diamonds at room temperature and standard pressure conditions. Moreover, we propose a method for the purification of nanodiamonds from graphitic and amorphous carbon phases that do not require strong acids and harsh chemical conditions. Finally, we present a thermodynamic model that describes the formation of nanodiamonds during pulsed laser ablation. We show that synthesis of the crystalline phase is driven by a graphite–liquid–diamond transition process that occurs at the extreme thermodynamic conditions reached inside the ablation plume.


  1. 1.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    V.Y. Dolmatov, Russ. Chem. Rev. 70, 607 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J. Han, C.A. Klug, J.G. Zhou, P.I. Lelkes, Y. Gogotsi, Biomaterials 32, 87 (2011)CrossRefGoogle Scholar
  4. 4.
    E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Sci. Transl. Med. 3, 73ra21 (2011)CrossRefGoogle Scholar
  5. 5.
    M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C. Hollenberg, Phys. Rep. 528, 1 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    D. Le Sage, K. Arai, D.R. Glenn, S.J. DeVience, L.M. Pham, L. Rahn-Lee, M.D. Lukin, A. Yacoby, A. Komeili, R.L. Walsworth, Nature 496, 486 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Iakoubovskii, M.V. Baidakova, B.H. Wouters, A. Stesmans, G.J. Adriaenssens, A.Y. Vul’, P.J. Grobet, Diam. Relet. Mater. 9, 861 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    C.R. Lin, D.H. Wei, M.K. Ben Dao, R.J. Chung, M.H. Chang, Appl. Mech. Mater. 284, 168 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    X.D. Ren, R. Liu, L.M. Zheng, Y.P. Ren, Z.Z. Hu, H. He, Appl. Phys. Lett. 107, 141907 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Crit. Rev. Solid State Mater. Sci. 34, 18 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Bonelli, A.C. Ferrari, A. Fioravanti, A. Li Bassi, A. Miotello, P.M. Ossi, Eur. Phys. J. B 25, 269 (2002)ADSGoogle Scholar
  12. 12.
    P. Mosaner, M. Bonelli, A. Miotello, Appl. Surf. Sci. 208, 561 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    S.K. Sharma, H.K. Mao, P.M. Bell, J.A. Xu, J. Raman Spectrosc. 16, 350 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    E.D. Obraztsova, M. Fujii, S. Hayashi, V.L. Kuznetsov, Y.V. Butenko, A.L. Chuvilin, Carbon 36, 821 (1998)CrossRefGoogle Scholar
  16. 16.
    X.D. Ren, H.M. Yang, L.M. Zheng, S.Q. Yuan, S.X. Tang, N.F. Ren, S.D. Xu, Appl. Phys. Lett. 105, 021908 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    F. Gorrini, M. Cazzanelli, N. Bazzanella, R. Edla, M. Gemmi, V. Cappello, J. David, C. Dorigoni, A. Bifone, A. Miotello, Sci. Rep. 6, 35244 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    D. Amans, M. Diouf, J. Lam, G. Ledoux, C. Dujardin, J. Colloid Interface Sci 489, 114 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Viecelli, S. Bastea, J.N. Glosli, F.H. Ree, J. Chem. Phys. 115, 2730 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L.B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E.J. Gamboa, S. Goede, E. Granados, G. Gregori, H.J. Lee, P. Neumayer, W. Schumaker, T. Doeppner, R.W. Falcone, S.H. Glenzer, M. Roth, Nat. Commun. 7, 10970 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    T. Sakka, K. Saito, Y.H. Ogata, Appl. Surf. Sci. 197, 246 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    A. Mazzi, F. Gorrini, A. Miotello, Phys. Rev. E 92, 031301 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, Phys. Rev. E 82, 016404 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Lam, V. Motto-Ros, D. Misiak, C. Dujardin, G. Ledoux, D. Amans, Spectrochim. Acta Part B Atom. Spectrosc. 101, 86 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys 82, 2826 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. Lond. A 362, 2477 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J. Narayan, A. Bhaumik, APL Mater. 3, 100702 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • L. Basso
    • 1
    • 2
    Email author
  • F. Gorrini
    • 1
    • 2
  • N. Bazzanella
    • 1
  • M. Cazzanelli
    • 2
  • C. Dorigoni
    • 2
  • A. Bifone
    • 2
  • A. Miotello
    • 1
  1. 1.Dipartimento di FisicaUniversità Degli Studi di TrentoPovoItaly
  2. 2.Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly

Personalised recommendations