Advertisement

Time-resolved microscopy of fs-laser-induced heat flows in glasses

  • 649 Accesses

  • 2 Citations

Abstract

Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Y. Bellouard, A. Said, M. Dugan, P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120 (2004)

  2. 2.

    R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219 (2008)

  3. 3.

    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining—Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 1st ed., ed. by R. Osellame, G. Cerullo, R. Ramponi, vol. 123 (Springer, Berlin, Heidelberg, 2012)

  4. 4.

    K. Sugioka, Y. Cheng, Ultrafast lasers - reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)

  5. 5.

    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729 (1996)

  6. 6.

    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89, 021106 (2006)

  7. 7.

    A.R. Collins, G.M. O’Connor, Mechanically inspired laser scribing of thin flexible glass. Opt. Lett. 40, 4811 (2015)

  8. 8.

    N. Brouwer, B. Rethfeld, Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse, J. Opt. Soc. Am. B 31, C28 (2014)

  9. 9.

    S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332 (2015)

  10. 10.

    M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, K. Hirao, Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses. Appl. Phys. Lett. 93, 231112 (2008)

  11. 11.

    N. Bloembergen, Laser-induced electric breakdown in solids. IEEE J. Quantum Electron. 10, 375 (1974)

  12. 12.

    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)

  13. 13.

    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076 (1998)

  14. 14.

    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)

  15. 15.

    J.M. Larkin, A.J.H. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Phys. Rev. B 89, 144303 (2014)

  16. 16.

    J.F. Power, Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory, Appl. Opt. 29, 52 (1990)

  17. 17.

    M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. Opt. Express 15, 16800 (2007)

  18. 18.

    V.V. Kononenko, E.V. Zavedeev, M.I. Latushko, V.I. Konov, Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys. Lett. 10, 036003 (2013)

  19. 19.

    G. Ghosh, Model for the thermo-optic coefficients of some standard optical glasses. J. Non-Cryst. Solids 189, 191 (1995)

  20. 20.

    A. Mermillod-Blondin, H. Mentzel, A. Rosenfeld, Time-resolved microscopy with random lasers. Opt. Lett. 38, 4112 (2013)

  21. 21.

    M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Ultrafast laser nanostructuring in bulk silica, a slow microexplosion. Optica 4, 951 (2017)

  22. 22.

    A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, I.V. Hertel, Time-resolved imaging of laser-induced refractive index changes in transparent media. Rev. Sci. Instrum. 82, 033703 (2011)

  23. 23.

    D.S. Wiersma, The physics and applications of random lasers, Nat. Phys. 4, 359 (2008)

  24. 24.

    B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355 (2012)

  25. 25.

    A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates, Phys. Rev. B 77, 104205 (2008)

  26. 26.

    T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass. Jpn. J. Appl. Phys. 51, 102403 (2012)

  27. 27.

    M. Grehn, T. Seuthe, M. Höfner, N. Griga, C. Theiss, A. Mermillod-Blondin, M. Eberstein, H. Eichler, J. Bonse, Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy, Opt. Mater. Express 4, 689 (2014)

  28. 28.

    V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29, 1312 (2004)

  29. 29.

    A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005)

  30. 30.

    T.H. Nguyen, M. Kandel, H.M. Shakir, C. Best-Popescu, J. Arikkath, M.N. Do, G. Popescu, Halo-free phase contrast microscopy. Sci. Reports 7, 44034 (2017)

  31. 31.

    E. Gamaly, The physics of ultra-short laser interaction with solids at non-relativistic intensities, Phys. Rep. 508, 91 (2011)

  32. 32.

    M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses, J. Appl. Phys. 108, 073533 (2010)

  33. 33.

    H. Carlsaw, J. Jaeger, Conduction of heat in solids (Oxford Science Publications, Oxford, 1959)

  34. 34.

    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod- Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses, J. Appl. Phys. 101, 043506 (2007)

  35. 35.

    P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, J.-L. Rullier, Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations. Appl. Phys. Lett. 101, 211908 (2012)

  36. 36.

    F. Gan, New system of calculation of properties of inorganic oxide glasses, Sci. Sin. 17, 533 (1974) (in Russian)

  37. 37.

    R. Kamikawachi, I. Abe, A. Paterno, H. Kalinowski, M. Muller, J. Pinto, J. Fabris, Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer. Optics Commun. 281, 621 (2008)

  38. 38.

    Y.H. Kim, S.J. Park, S.-W. Jeon, S. Ju, C.-S. Park, W.-T. Han, B.H. Lee, Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe. Opt. Express 20, 23744 (2012)

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the German Research Foundation DFG (Grants Nos. EB 248/4-2; EI 110/30-2; RO 2074/8-2; ME 4427/1-1).

Author information

Correspondence to Alexandre Mermillod-Blondin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 863 kb)

Supplementary material 2 (AVI 813 kb)

Supplementary material 1 (AVI 863 kb)

Supplementary material 2 (AVI 813 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonse, J., Seuthe, T., Grehn, M. et al. Time-resolved microscopy of fs-laser-induced heat flows in glasses. Appl. Phys. A 124, 60 (2018). https://doi.org/10.1007/s00339-017-1465-5

Download citation