Advertisement

Applied Physics A

, 124:47 | Cite as

Structural and electrical investigations of MBE-grown SiGe nanoislands

  • İsa Şeker
  • Ali Karatutlu
  • Osman Gürbüz
  • Serhat Yanık
  • Yakup Bakış
  • Mehmet Karakız
Article

Abstract

SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I–V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.

Notes

Acknowledgements

This work was supported by Fatih University Research Council under the Project number of P500661201_B (2170). All the experimental studies were carried out in Bionanotechnology Research and Development Center (BINATAM).

Supplementary material

339_2017_1448_MOESM1_ESM.docx (566 kb)
Supplementary material 1 (DOCX 566 KB)

References

  1. 1.
    S.W. Bedell, A. Khakifirooz, D.K. Sadana, Strain scaling for CMOS. MRS Bull. 39, 131–137 (2014).  https://doi.org/10.1557/mrs.2014.5 CrossRefGoogle Scholar
  2. 2.
    W. Hu, B. Cheng, C. Xue, S. Su, H. Xue, Y. Zuo et al., Ge-on-Si for Si-based integrated materials and photonic devices. Front Optoelectron. 5, 41–50 (2012).  https://doi.org/10.1007/s12200-012-0200-2 CrossRefGoogle Scholar
  3. 3.
    M. Klemenc, T. Meyer, H. von Kanel, Si surface band-gap shift on top of buried Ge quantum dots. Appl. Surf. Sci. 166, 268–272 (2000).  https://doi.org/10.1016/S0169-4332(00)00404-9 ADSCrossRefGoogle Scholar
  4. 4.
    J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010).  https://doi.org/10.1038/nphoton.2010.157 ADSCrossRefGoogle Scholar
  5. 5.
    M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 11101 (2005).  https://doi.org/10.1063/1.1819976 ADSCrossRefGoogle Scholar
  6. 6.
    K.L. Wang, D. Cha, J. Liu, C. Chen, Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proc. IEEE 95, 1866–1883 (2007).  https://doi.org/10.1109/JPROC.2007.900971 CrossRefGoogle Scholar
  7. 7.
    K. Ma, R. Chen, D.A.B. Miller, J.S. Harris, Novel on-chip fully monolithic integration of GaAs devices with completely fabricated Si CMOS circuits. IEEE J. Sel. Top Quantum Electron 11, 1278–1283 (2005).  https://doi.org/10.1109/JSTQE.2005.860991 CrossRefGoogle Scholar
  8. 8.
    R. Oshima, Y. Watanabe, M. Yamanaka, H. Kawanami, I. Sakamoto, K. Matsubara et al., High-quality SiGe films grown with compositionally graded buffer layers for solar cell applications. J. Cryst. Growth 378, 226–229 (2013).  https://doi.org/10.1016/j.jcrysgro.2012.12.154 ADSCrossRefGoogle Scholar
  9. 9.
    P. Tomasini, V. Machkaoutsan, S.G. Thomas, Analysis of silicon germanium vapor phase epitaxy kinetics. Thin Solid Films 518, S12–S17 (2010).  https://doi.org/10.1016/j.tsf.2009.10.046 ADSCrossRefGoogle Scholar
  10. 10.
    J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper et al., Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl. Phys. Lett. 98, 61108 (2011).  https://doi.org/10.1063/1.3555439 CrossRefGoogle Scholar
  11. 11.
    V. Sorianello, L. Colace, M. Nardone, G. Assanto, Thermally evaporated single-crystal Germanium on Silicon. Thin Solid Films 519, 8037–8040 (2011).  https://doi.org/10.1016/j.tsf.2011.06.023 ADSCrossRefGoogle Scholar
  12. 12.
    D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, L.-J. Wan, Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv. Mater. 23, 3704–3707 (2011).  https://doi.org/10.1002/adma.201101436 CrossRefGoogle Scholar
  13. 13.
    J.P. Sun, G.I. Haddad, P. Mazumder, J.N. Schulman, Resonant tunneling diodes: models and properties. Proc. IEEE 86, 641–660 (1998).  https://doi.org/10.1109/5.663541 CrossRefGoogle Scholar
  14. 14.
    R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top Quantum Electron 12, 1678–1687 (2006).  https://doi.org/10.1109/JSTQE.2006.883151 CrossRefGoogle Scholar
  15. 15.
    I.J. Kuzma-Filipek, F. Duerinckx, E. Van Kerschaver, K. Van Nieuwenhuysen, G. Beaucarne, J. Poortmans, Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells. J. Appl. Phys. 104, 73529 (2008).  https://doi.org/10.1063/1.2993753 CrossRefGoogle Scholar
  16. 16.
    S.P. Tobin, S.M. Vernon, C. Bajgar, V.E. Haven, L.M. Geoffroy, D.R. Lillington, High-efficiency GaAs/Ge monolithic tandem solar cells. IEEE Electron Device Lett. 9, 256–258 (1988).  https://doi.org/10.1109/55.708 ADSCrossRefGoogle Scholar
  17. 17.
    C.S.C. Barrett, A.G. Lind, X. Bao, Z. Ye, K.Y. Ban, P. Martin et al., Quantitative correlation of interfacial contamination and antiphase domain boundary density in GaAs on Si(100). J. Mater. Sci. 51, 449–456 (2016).  https://doi.org/10.1007/s10853-015-9334-0 ADSCrossRefGoogle Scholar
  18. 18.
    O. Rubel, S.D. Baranovskii, Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int. J. Mol. Sci. 10, 5104–5114 (2009).  https://doi.org/10.3390/ijms10125104 CrossRefGoogle Scholar
  19. 19.
    K. Eberl, O. Schmidt, R. Duschl, O. Kienzle, E. Ernst, Y. Rau, Self-assembling SiGe and SiGeC nanostructures for light emitters and tunneling diodes. Thin Solid Films 369, 33–38 (2000).  https://doi.org/10.1016/S0040-6090(00)00830-0 ADSCrossRefGoogle Scholar
  20. 20.
    J. Stangl, V. Holý, G. Bauer, Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004).  https://doi.org/10.1103/RevModPhys.76.725 ADSCrossRefGoogle Scholar
  21. 21.
    C. Tan, H. Zhang, Z.Y. Fang, W. Zhou, Z. Liu, D.G. Mandrus et al., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015).  https://doi.org/10.1039/C4CS00182F CrossRefGoogle Scholar
  22. 22.
    C. Teichert, Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335–432 (2002).  https://doi.org/10.1016/S0370-1573(02)00009-1 ADSCrossRefGoogle Scholar
  23. 23.
    D.J. Paul, Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond. Sci. Technol. 19, R75–R108 (2004).  https://doi.org/10.1088/0268-1242/19/10/R02 ADSCrossRefGoogle Scholar
  24. 24.
    S. Ke, S. Ye, J. Yang, Z. Wang, C. Wang, Y. Yang, Morphological evolution of self-assembled SiGe islands based on a mixed-phase pre-SiGe island layer grown by ion beam sputtering deposition. Appl. Surf. Sci. 328, 387–394 (2015).  https://doi.org/10.1016/j.apsusc.2014.11.034 ADSCrossRefGoogle Scholar
  25. 25.
    A.M.P. dos Anjos, I. Doi, J.A. Diniz, Structural characterization of SiGe nanoclusters formed by rapid thermal annealing. Appl. Surf. Sci. 254, 6055–6058 (2008).  https://doi.org/10.1016/j.apsusc.2008.02.119 ADSCrossRefGoogle Scholar
  26. 26.
    K.-H. Shim, H. Deok Yang, Y.-H. Kil, J.-H. Yang, W.-K. Hong, J.-J. Kim et al., Characterization of reduced pressure chemical vapor deposited Si0.8Ge0.2/Si multi-layers. Mater. Sci. Semicond. Process 16, 126–130 (2013).  https://doi.org/10.1016/j.mssp.2012.06.002 CrossRefGoogle Scholar
  27. 27.
    A.F. Abd Rahim, M.R. Hashim, N.K. Ali, A.M. Hashim, M. Rusop, M.H. Abdullah, The evolution of Si-capped Ge islands on Si (100) by RF magnetron sputtering and rapid thermal processing: The role of annealing times. Microelectron. Eng. 126, 134–142 (2014).  https://doi.org/10.1016/j.mee.2014.06.026 CrossRefGoogle Scholar
  28. 28.
    N. Pinto, R. Murri, R. Rinaldi, G. Barucca, Strain-driven morphology of Si1–xGex islands grown on Si(100). Micron 31, 315–321 (2000).  https://doi.org/10.1016/S0968-4328(99)00099-2 CrossRefGoogle Scholar
  29. 29.
    N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M.V. Shaleev, A.V. Novikov et al., Effects of boron and phosphorus doping on the photoluminescence of self-assembled germanium quantum dots. Appl. Phys. Lett. 94, 183103 (2009).  https://doi.org/10.1063/1.3114377 ADSCrossRefGoogle Scholar
  30. 30.
    W. Luo, X. Wang, C. Meyers, N. Wannenmacher, W. Sirisaksoontorn, M.M. Lerner et al., Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions. Sci. Rep. 3, 2222 (2013).  https://doi.org/10.1038/srep02222 ADSCrossRefGoogle Scholar
  31. 31.
    G. Sahu, H.P. Lenka, D.P. Mahapatra, B. Rout, F.D. McDaniel, Narrow band UV emission from direct bandgap Si nanoclusters embedded in bulk Si. J. Phys. Condens. Matter 22, 72203 (2010).  https://doi.org/10.1088/0953-8984/22/7/072203 CrossRefGoogle Scholar
  32. 32.
    B. Saha, M. Sharma, A. Sarma, A. Rath, P.V. Satyam, P. Chakraborty et al., Surface and interfacial structural characterization of MBE grown Si/Ge multilayers. Appl. Surf. Sci. 256, 547–551 (2009).  https://doi.org/10.1016/j.apsusc.2009.08.031 ADSCrossRefGoogle Scholar
  33. 33.
    Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, Q. Wang, Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature. Nanoscale Res. Lett. 7, 383 (2012).  https://doi.org/10.1186/1556-276X-7-383 ADSCrossRefGoogle Scholar
  34. 34.
    L. Nataraj, N. Sustersic, M. Coppinger, L.F. Gerlein, J. Kolodzey, S.G. Cloutier, Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy. Appl. Phys. Lett. 96, 121911 (2010).  https://doi.org/10.1063/1.3371759 ADSCrossRefGoogle Scholar
  35. 35.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981).  https://doi.org/10.1016/0038-1098(81)90337-9 ADSCrossRefGoogle Scholar
  36. 36.
    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986).  https://doi.org/10.1016/0038-1098(86)90513-2 ADSCrossRefGoogle Scholar
  37. 37.
    T.S. Perova, R.A. Moore, K. Lyutovich, M. Oehme, E. Kasper, Strain, composition and crystalline perfection in thin SiGe layers studied by Raman spectroscopy. Thin Solid Films 517, 265–268 (2008).  https://doi.org/10.1016/j.tsf.2008.08.060 ADSCrossRefGoogle Scholar
  38. 38.
    S.S. Iyer, J.C. Tsang, M.W. Copel, P.R. Pukite, R.M. Tromp, Growth temperature dependence of interfacial abruptness in Si/Ge heteroepitaxy studied by Raman spectroscopy and medium energy ion scattering. Appl. Phys. Lett. 54, 219–221 (1989).  https://doi.org/10.1063/1.101014 ADSCrossRefGoogle Scholar
  39. 39.
    A. Karatutlu, M. Song, A.P. Wheeler, O. Ersoy, W.R. Little, Y. Zhang et al., Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging. RSC Adv. 5, 20566–20573 (2015).  https://doi.org/10.1039/C5RA01529D CrossRefGoogle Scholar
  40. 40.
    A.B. Talochkin, A.G. Cherkov, Raman determination of uniformity of multilayer Si/Ge structures with Ge quantum dots. Nanotechnology 20, 345702 (2009).  https://doi.org/10.1088/0957-4484/20/34/345702 CrossRefGoogle Scholar
  41. 41.
    S.K. Ray, R.K. Singha, S. Das, S. Manna, A. Dhar, Ge based nanostructures for electronic and photonic devices. Microelectron. Reliab. 50, 674–678 (2010).  https://doi.org/10.1016/j.microrel.2010.01.049 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Bionanotechnology Research and Development Center (BINATAM)Fatih UniversityIstanbulTurkey
  2. 2.Materials Science and Nanotechnology Department, UNAM-National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  3. 3.The Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  4. 4.Department of PhysicsYıldız Technical UniversityIstanbulTurkey
  5. 5.Department of Metallurgical and Materials EngineeringMarmara UniversityIstanbulTurkey
  6. 6.Department of Mechatronics EngineeringCumhuriyet UniversitySivasTurkey

Personalised recommendations