Applied Physics A

, 124:34 | Cite as

Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

  • T. S. Bhat
  • A. V. Shinde
  • R. S. Devan
  • A. M. Teli
  • Y. R. Ma
  • J. H. Kim
  • P. S. Patil


The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g− 1 obtained at 0.25 mA cm− 2 current density. The maximum energy density of 69 Wh kg− 1 was showed by PbSe:2 electrode with a power density of 1077 W kg− 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.



One of the author TSB is thankful to the University Grants Commission (UGC) New Delhi, India for awarding the UGC-BSR (JRF) fellowship (Grant no. F.25-1/2013-14(BSR)/7-167/2007 (BSR)) for financial support. Author AVS is thankful to the Department of Science and Technology (DST) New Delhi, India for awarding ‘Scholarship for Higher Education (SHE)(2205/2012)’ through ‘INSPIRE’ scheme. This work is supported by University Grants Commission (UGC), New Delhi, through the project no. 43-517/2014(SR) and partially supported by the Human Resources Development program (no.: 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry, and Energy.


  1. 1.
    K. Ardakania, M. Holl, Prog. Mater. Sci. 87, 221 (2017)CrossRefGoogle Scholar
  2. 2.
    C. Hou, M. Zhang, A. Halder, Q. Chi, Electrochim. Acta 242, 202 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Pathakoti, M. Manubolu, H. Hwang, J. Food Drug Anal. 25, 245 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Lund, Microelectron. Eng. 108, 84 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc. 143, 3791 (1996)CrossRefGoogle Scholar
  6. 6.
    B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers, New York, 1999)CrossRefGoogle Scholar
  7. 7.
    C. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, J. Phys. Chem. B 109, 20207 (2005)CrossRefGoogle Scholar
  8. 8.
    Q. Tang, M. Chen, L. Wang, G. Wang, J. Power Sources 273, 654 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. Shinde, N. Chodankar, V. Lokhande, A. Lokhande, T. Ji, J. Kim, C. Lokhande, RSC Adv. 6, 58839 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C. Ozkan, Sci. Rep. 4, 4452 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    W. Liao, B. Wang, Z. Liu, Int. J. Hydrog. Energy 42, 10962 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, B. Zhang, L. Ning, S. Li, Y. Zheng, Opt. Commun. 383, 371 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S. Lee, Y. Wang, Y. Liu, D. Lee, K. Lee, D. Lee, T. Lian, Chem. Phys. Lett. 683, 342 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Suh, S. Suh, S. Lee, G. Kim, Thin Solid Films 628, 148 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    W. Feng, X. Wang, F. Chen, W. Liu, H. Zhou, S. Wang, H. Li, Thin Solid Films 578, 25 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    E. Torresa, M. López, Y. Matsumoto, J. Salazarc, Mater. Res. Bull. 80, 96 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Wagner, N. Singh, S. McLaughlin, A. Berghmans, D. Kahler, D. Knuteson, J. Cryst. Growth 311, 1080 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D. Talapin, H. Yu, E. Shevchenko, A. Lobo, C. Murray, J. Phys. Chem. C 111, 14049 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Bhat, S. Vanalakar, R. Devan, S. Mali, S. Pawar, Y. Ma, C. Hong, J. Kim, P. Patil, J. Mater. Sci. Mater. Electron. 27, 4996 (2016)CrossRefGoogle Scholar
  20. 20.
    I. Urbiola, J. Martínez, J. Borja, C. García, R. Bon, Y. Vorobiev, Energy Proc. 57, 24 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Osherov, M. Shandalov, V. Ezersky, Y. Golan, J. Cryst. Growth 304, 169 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    L. Jin, Z. Yabo, Y. Dagen, H. Zhanjun, J. Cryst. Growth 304, 169 (2007)CrossRefGoogle Scholar
  23. 23.
    E. El-Menyawy, G. Mahmoud, S. Gad, A. Azab, F. Terr, J. Inorg. Organomet. Polym. Mater. 25, 1044 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Zhang, Z. Kang, E. Shen, E. Wang, L. Gao, F. Luo, C. Tian, C. Wang, Y. Lan, J. Phys. Chem. B 110, 184 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Isi, P. Ekwo, Res. J. Eng. Sci 2, 15 (2013)Google Scholar
  26. 26.
    S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)CrossRefGoogle Scholar
  27. 27.
    Y. Lau, D. Chernak, M. Bierman, S. Jin, J. Mater. Chem. 19, 934 (2009)CrossRefGoogle Scholar
  28. 28.
    R. Perez, G. Tellez, U. Rosas, A. Torres, J. Tecorralco, L. Lima, O. Moreno, Mater. Sci. Eng. A 3, 1 (2013)Google Scholar
  29. 29.
    J. Cui, F. Guo, X. Liu, Chem. Lett. 34, 170 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Mahmoud, O. Hamid, FIZIKA A (Zagreb) 10, 21 (2001)Google Scholar
  31. 31.
    W. Burton, N. Cabrera, F. Frank, Nature 163, 398 (1949)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Xiong, Y. Xia, Adv. Mater. 19, 3385 (2003)CrossRefGoogle Scholar
  33. 33.
    Z. Wang, J. Phys. Chem. B 104, 1153 (2000)CrossRefGoogle Scholar
  34. 34.
    I. Pintilie, E. Pentia, L. Pintilie, D. Petre, C. Constantin, T. Botila, J. Appl. Phys. 78, 1713 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, S. Feng, Cryst. Eng. Commun. 15, 597 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Petroski, Z. Wang, T. Green, M. Sayed, J. Phys. Chem. B 102, 3316 (1998)CrossRefGoogle Scholar
  37. 37.
    H. abrisch, L. Kjeldgaard, E. Johnson, U. Dahmen, Acta Mater. 49, 4259 (2001)CrossRefGoogle Scholar
  38. 38.
    Y. Tang, W. Cheng, Nanoscale 7, 16151 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    G. Xi, J. Ye, Inorg. Chem. 49, 2302 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Lee, S. Cho, J. Cheon, Adv. Mater. 15, 441 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Amelinckx, Philos. Mag. 44, 337 (1953)CrossRefGoogle Scholar
  42. 42.
    R. Penn, J. Banfield, Science 281, 969 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Q. Wang, G. Chen, H. Yin, J. Mater. Chem. A 1, 15355 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Trujillo, E. Rosendo, M. Ortega, A. Sanchez, J. Gracia, T. Dıaz, G. Nieto, G. Garcıa, J. Lopez, M. Pacio, Nanotechnology 23, 185602 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    S. Mali, S. Desai, S. Kalagi, C. Betty, P. Bhosale, R. Devan, Y. Ma, P. Patil, Dalton Trans. 41, 6130 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Zhu, H. Wang, S. Xu, H. Chen, Langmuir 18, 3306 (2002)CrossRefGoogle Scholar
  47. 47.
    J. Moulder, W. Stickle, P. Sobol, K. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Eden Prairie, 1992), pp. 92–93Google Scholar
  48. 48.
    S. Pawar, R. Devan, D. Patil, A. Moholkar, M. Gang, Y. Ma, J. Kim, P. Patil, Electrochim. Acta 98, 244 (2013)CrossRefGoogle Scholar
  49. 49.
    R. Devan, C. Lin, S. Gao, C. Cheng, Y. Liou, Y. Ma, Phys. Chem. Chem. Phys. 13, 13441 (2011)CrossRefGoogle Scholar
  50. 50.
    J. Xie, F. Tu, Q. Suc, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, Nano Energy 5, 122 (2014)CrossRefGoogle Scholar
  51. 51.
    E. Gobert, O. Vittoki, Electrichim. Acta 33, 245 (1998)CrossRefGoogle Scholar
  52. 52.
    X. Chen, Y. Zhu, Z. Xing, G. Tang, H. Fan, J. Mater. Sci. Mater. Electron. 27, 1155 (2016)Google Scholar
  53. 53.
    N. Chodankar, G. Gund, D. Dubal, C. Lokhande, RSC Adv. 4, 61503 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia
  3. 3.Department of PhysicsNational Dong Hwa UniversityHualienTaiwan, ROC
  4. 4.School of Applied Chemical EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations