Applied Physics A

, 124:15 | Cite as

Intrinsic evolution of novel (Nd, MM)2Fe14B-system magnetic flakes



The Nd-substituted (Nd x MM1−x )–Fe–B strip-casting flakes were prepared by induction melting in the vacuum furnace and then subsequently by strip-casting technology. The microstructure and magnetic properties of (Nd x MM1−x )–Fe–B alloys are related to the Nd substitution. 2:14:1 main phases and minor impure phases coexist in the MM–Fe–B flake. For example, La2O3 and CeFe2 impure phases are obviously detected in the x = 0 specimen. As an increase of the Ce concentration is inversely accompanied with the decrease of the Nd content (x) in (Nd x MM1−x )2Fe14B main phases (0 ≤ x ≤ 1), XRD analysis shows that the overall diffraction peaks of the main phases shift to right domestically because of smaller radius Ce4+. The melting point, spin reorientation phase transition temperature, Curie temperature, magneto-crystalline anisotropy field (at 300 K), and the magnetization (M 9T) for MM–Fe–B/(Nd0.4MM0.6)–Fe–B/(Nd0.7MM0.3)–Fe–B/Nd–Fe–B strip-casting alloys are 1376.15/1414.15/1439.15/1458.15 K, 74/113/124/135 K, 493.2/538.4/559.7/582.3 K, 48/55.2/64.4/70.1 kOe and 136.5/143.7/151.5/153.7 emu/g, respectively. Due to the varied composition of hard magnetic main phases, M 9T increases gradually with the increase of Nd content (x). SEM observation and EDX results demonstrate that more Nd and Pr elements aggregate into the 2:14:1 ferromagnetic phase, while less La and Ce elements are prone to the RE-rich region compared with the nominal ratio. As a result, the growth of M 9T becomes extraordinary under maximum external field 9 T, indicating that the (Nd0.7MM0.3)–Fe–B flake may display relatively good magnetic properties and those with higher Nd content have evident effect on magnetization, compositions, and microstructures of hard magnetic main phases. Therefore, practical application of (Nd x MM1−x )–Fe–B-sintered magnets will be very prospective.



This work was supported by the Major State Basic Research Development Program of China (973 Program) (2014CB643701), National Natural Science Foundation of China (51571064, 51331003, and 51371002), National Key Research and Development Program of China (2016YFB0700902), International S&T Cooperation Program of China (2015DFG52020), and the 2011 Cooperative Innovation Center of Beijing University of Technology.


  1. 1.
    Y. Kaneko, F. Kuniyoshi, N. Ishigaki, Proven technologies on high-performance Nd-Fe-B sintered magnets. J. Alloy Compd. 408–412, 1344–1349 (2006)CrossRefGoogle Scholar
  2. 2.
    B. P. Hu, Status and development tendency of rare-earth permanent magnet materials (in Chinese). J. Magn. Mater. Device, 45, 66–77+80 (2014)Google Scholar
  3. 3.
    M. G. Zhu, X. M. Liu, Y. K. Fang, W. Li, Magnetic microstructure and coercivity mechanism of high performance Nd-Fe-B magnets. Rare Met. 25, 630–632 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Jurczyk, Effect of substitution of Al and Mo on the magnetic properties of R2Fe12-xTxCo2B (R=synthetic mischmetal, didymium and neodymium). J. Magn. Magn. Mater. 73, 199–204 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    C. N. Christodoulou, J. Schlup, G. C. Hadjipanayis, Oxidation of Fe-R-B powders during preparation of permanent magnets. J. Appl. Phys. 61, 3760–3762 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    T. D. Hien, L. T. Tai, R. Grossinger, R. Krewenka, F. R. Deboer, F. F. Bekker, Comparison of the magnetic properties of Mm-Fe-B and Nd-Fe-B compounds. J. Less Comm. Met. 127, 111–116 (1987)CrossRefGoogle Scholar
  7. 7.
    W. Gong, G. C. Hadjipanayis, Misch-metal-iron based magnets. J. Appl. Phys. 63, 3513–3515 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    J. F. Herbst, R2Fe14B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–828 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    X. M. Chang, Low-priced Nd-Fe-B with addition of mixed rare earth metals (in Chinese). Chin. J. Rare Metals, 26, 284–286 (2002)ADSGoogle Scholar
  10. 10.
    E. Niu, Z. A. Chen, G. A. Chen, Y. G. Zhao, J. Zhang, X. L. Rao, B. P. Hu, Z. X. Wang, Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method. J. Appl. Phys. 115, 07A718-xii (2014)Google Scholar
  11. 11.
    X. Q. Yu, M. Yue, W. Q. Liu, Z. Li, M. G. Zhu, S. Z. Dong, Structure and intrinsic magnetic properties of MM2Fe14B (MM=La, Ce, Pr, Nd) alloys. J. Rare Earths, 34, 614–617 (2016)CrossRefGoogle Scholar
  12. 12.
    R. X. Shang, J. F. Xiong, R. Li, W. L. Zuo, J. Zhang, T. Y. Zhao, R. J. Chen, J. R. Sun, B. G. Shen, Structure and properties of sintered MM-Fe-B magnets. AIP Adv. 7, 056215 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Xiong, R. X. Shang, X. Zhao, B. G. Shen, Microstructures and magnetic properties of sintered R-Fe-B magnets by dual phase method (in Chinese). in Abstracts of the 16th National Conference on Magnetism and Magnetic Materials. (Yangzhou, China, 2015), p. 161Google Scholar
  14. 14.
    M. G. Zhu, H. J. Wang, L. Wei, Z. B. Li, Study on preferred orientation in Nd-Fe-B cast strip. J. Iron Steel Res. Int. 13, 119–121 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Sagawa, S. Fujimura, N. Togawa, Y. Matsuura, New material for permanent magnets on a base of Nd and Fe (invited). J. Appl. Phys. 55, 2083–2087 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    T. W. Capehart, R. K. Mishra, G. P. Meisner, C. D. Fuerst, J. F. Herbst, Steric variation of the cerium valence in Ce2Fe14B and related compounds. Appl. Phys. Lett. 63, 3642–3644 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    A. K. Pathak, M. Khan, K. A. Gschneidner, R. W. McCallum, L. Zhou, K. Sun, K. W. Dennis, C. Zhou, F. E. Pinkerton, M. J. Kramer, V. K. Pecharsky, Cerium: An unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets. Adv. Mater. 27, 2663–2667 (2015)CrossRefGoogle Scholar
  18. 18.
    F. D. Saccone, H. Sirkin, Influence of Mischmetal on the magnetic properties of B-rich Nd-Fe-B nanocrystalline ribbons. J. Magn. Magn. Mater. 294, 127–130 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kronmuller, The nucleation fields of uniaxial ferromagnetic crystals. Phys. Stat. Sol. (b), 130, 197–203 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Zhou, Z. W. Liu, X. C. Zhong, G. Q. Zhang, Properties improvement and structural optimization of sintered NdFeB magnets by non-rare earth compound grain boundary diffusion. Mater. Design, 86, 114–120 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, T. S. Zhao, H. M. Jin, F. M. Yang, J. Q. Xie, X. W. Li, R. W. Zhao, E. R. de Boer, Estimation of the exchange and crystalline field parameters at R sites in R2Fe14B compounds (R=Pr, Nd, Sm, Tb, Dy, Ho, Er and Tm). IEEE Trans. Magn. 25, 3443–3445 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    T. B. Zhang, X. Q. Zhou, D. D. Yu, Y. Q. Fu, G. J. Li, W. B. Cui, Q. Wang, Ultrahigh coercivity and core–shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys. Appl. Phys. A, 123, 111 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    W. F. Li, T. Ohkubo, K. Hono, M. Sagawa, The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets. J. Magn. Magn. Mater. 321, 1100–1105 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Hernando, Magnetic properties and spin disorder in nanocrystalline materials. J. Phys.: Condens. Mater. 11, 9455–9482 (1999)Google Scholar
  25. 25.
    M. F. D. Campos, Effect of grain size on the coercivity of sintered NdFeB magnets. Mater. Sci. Forum, 660–661, 284–289 (2010)CrossRefGoogle Scholar
  26. 26.
    V. Neu, U. Klement, R. Schafer, J. Eckert, L. Schultz, Remanence enhancement in mechanically alloyed two-phase Nd-Fe-B magnetic material. Mater. Lett. 26, 167–170 (1996)CrossRefGoogle Scholar
  27. 27.
    M. U. Devi, K. P. Gupta, The misch metal-iron system. J. Alloy Compd. 189, 145–149 (1992)CrossRefGoogle Scholar
  28. 28.
    W. L. Zuo, S. L. Zuo, R. Li, T. Y. Zhao, F. X. Hu, J. R. Sun, X. F. Zhang, J. P. Liu, B. G. Shen, High performance misch-metal (MM)-Fe-B magnets prepared by melt spinning. J. Alloys Compd. 695, 1786–1792 (2017)CrossRefGoogle Scholar
  29. 29.
    M. U. Devi, K. P. Gupta, Phase equilibria in the RE-Fe-B system at 1000℃. J. Less Comm. Met. 159, 13–21 (1990)CrossRefGoogle Scholar
  30. 30.
    D. Givord, H. S. Li, J. M. Moreau, R. P. D. L. Bâthie, E. D. T. D. Lacheisserie, Structural and magnetic properties in R2Fe14B compounds. Physica B+c, 130, 323–326 (1985)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Division of Functional MaterialsCentral Iron and Steel Research InstituteBeijingChina

Personalised recommendations