Advertisement

Applied Physics A

, 124:8 | Cite as

Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol–gel process

  • Mi XiaoEmail author
  • Zebin Zhang
  • Weikang Zhang
  • Ping ZhangEmail author
Article

Abstract

La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol–gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

Notes

Acknowledgements

The authors gratefully acknowledged the support from the Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University).

References

  1. 1.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25(6), 809 (1954)ADSCrossRefGoogle Scholar
  2. 2.
    M. Prabu, I.B.S. Banu, S. Gobalakrishnan et al., J. Mater. Sci. Mater. Electron. (5), 1 (2016)Google Scholar
  3. 3.
    A. Chaipanich, G. Rujijanagul, T. Tunkasiri, Appl. Phys. A Mater. 94(2), 329 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    P. Jegatheesan, N.V. Giridharan, J. Mater. Sci. Mater. Electron. 23(5), 1103 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Moazzami, C. Hu, W.H. Shepherd, IEEE. Trans. Electron. Dev. 39(9), 2044 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    W.C. Goh, K. Yao, C.K. Ong, Appl. Phys. A Mater. 81(5), 1089 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    I. Bretos, R. Jiménez, A. Wu et al., Adv. Mater. 26(9), 1405 (2014)CrossRefGoogle Scholar
  8. 8.
    J.P.B. Silva, S.A.S. Rodrigues, K.C. Sekhar et al., J. Mater. Sci. Mater. Electron. 24(12), 5097 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Zhang, S.Y. Zhang, K. Wasa et al., Phys. Status Solidi 208(10), 2460 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Y.B. Jeon, R. Sood, J.H. Jeong et al., Sens. Actuators A Phys. 122(1), 16 (2005)CrossRefGoogle Scholar
  11. 11.
    M.C. Rodríguez-Aranda, F. Calderón-Piñar, F.J. Espinoza-Beltrán et al., J. Mater. Sci. Mater. Electron. 25(11), 4806 (2014)CrossRefGoogle Scholar
  12. 12.
    J.F. Scott, Ferroelectrics 236(1), 247 (2000)CrossRefGoogle Scholar
  13. 13.
    H.M. Duiker, P.D. Beale, J.F. Scott et al., J. Appl. Phys. 68(11), 5783 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Scott, C.A. Araujo, B.M. Melnick et al., J. Appl. Phys. 70(1), 382 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    A. Gruverman, O. Auciello, H. Tokumoto, Appl. Phys. Lett. 69(21), 3191 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    E.L. Colla, S. Hong, D.V. Taylor et al., Appl. Phys. Lett. 72(21), 2763 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    C.H. Park, D.J. Chadi, Phys. Rev. B 57(22), 13961 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    S. Shannigrahi, K. Yao, J. Appl. Phys. 98(3), 797 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Miura, M. Tanaka, Jpn. J. Appl. Phys. 35(5A), 2719 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    T. Tseng, R.P. Yang, K. Liu et al., Appl. Phys. Lett. 70(1), 46 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    B. Yang, S. Aggarwal, A.M. Dhote et al., Appl. Phys. Lett. 71(3), 356 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    K.S. Liu, T.F. Tseng, I. Lin, Appl. Phys. Lett. 72(10), 1182 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Jang, K.H. Yoon, Appl. Phys. Lett. 75(1), 130 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    S. Dutta, A.A. Jeyaseelan, S. Sruthi, Thin Solid Films 562(562), 190 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Zhao, K. Zhang, L. Xu et al., J. Appl. Phys. 115(7), 2965 (2014)CrossRefGoogle Scholar
  26. 26.
    Z.G. Liu, J. Yin, Z.C. Wu, Appl. Phys. A Mater. 69(1), 659 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    W.Y. Choi, J.H. Ahn, W.J. Lee et al., Mater. Lett. 37(3), 119 (1998)CrossRefGoogle Scholar
  28. 28.
    M.V. Raymond, J. Chen, D.M. Smyth, Integr. Ferroelectr. 5(1), 73 (1994)CrossRefGoogle Scholar
  29. 29.
    T. Kijima, T. Aoyama, H. Miyazawa et al., Jpn. J. Appl. Phys. 44(1A), 267 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    S.R. Shannigrahi, H.M. Jang, Appl. Phys. Lett. 79(7), 1051 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    K.K. Shung, Proc. SPIE 3, 174 (2008)Google Scholar
  32. 32.
    G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54(1), 1 (2010)CrossRefGoogle Scholar
  33. 33.
    Q.M. Zhang, J. Zhao, K. Uchino, J. Zheng, J. Mater. Res. 12(1), 226 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    J. Li, in Broadband Dielectric Response in Hard and Soft PZT: Understanding Softening and Hardening Mechanisms.” Epfl (2011)Google Scholar
  35. 35.
    R.A. Eichel, J. Electroceram. 19(1), 11 (2007)CrossRefGoogle Scholar
  36. 36.
    R. Gerson, J. Appl. Phys 31(1), 188 (1960)ADSCrossRefGoogle Scholar
  37. 37.
    T. Sreesattabud, B.J. Gibbons, A. Watcharapasorn et al., Ceram. Int. 39, S521 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations