Advertisement

Applied Physics A

, 123:802 | Cite as

Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications

  • Lavinia Gavrila-Florescu
  • Florian Dumitrache
  • Mihaela Balas
  • Claudiu Teodor Fleaca
  • Monica Scarisoreanu
  • Iuliana P. Morjan
  • Elena Dutu
  • Alina Ilie
  • Ana-Maria Banici
  • Claudiu Locovei
  • Gabriel Prodan
Article

Abstract

Nano-sized Fe-based (metallic, carbidic and/or oxidic) core@ZnO shell particles have been successfully synthesized in one step by the laser-induced pyrolysis method in an oxygen-deficient environment. The specific precursors were separately introduced through a three concentric nozzles injector: Fe(CO)5 vapors carried by C2H4 sensitizer (central flow), Zn(C2H5)2 vapors carried and diluted with Ar (middle annular coflow) and Ar containing low amount of O2 (external flow). Keeping constant the ethylene-carried Fe(CO)5 and O2 flows, while diminishing the Zn(C2H5)2 flow, we observed an increase of the Fe/Zn ratio in the resulted nanopowders. Also, using the same metal precursor flows, a nonlinear correlation between O2 external flow and nanocomposite atomic oxygen content is evidenced, indicating a possible interference of supplementary oxidation after air exposure. However, the lowest oxygen content along with metallic zinc was found in the sample synthesized in the most oxygen-deficient environment. Transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and magnetic analyses were performed for a comprehensive characterization. The aqueous Fe-based@ZnO nanoparticles (NPs) suspensions were prepared using L-Dopa (l-3,4-dihydroxy-phenylalanine) as stabilizing agent in physiologic media. Also, a biocompatibility in vitro study was performed for PBS (phosphate buffered saline)-dispersed L-Dopa-stabilized Fe-based@ZnO nanoparticles with the best core–shell structural features on both human normal lung fibroblasts and tumoral colorectal cells. Our results proved the ability of these newly synthesized nanostructures to target cancer cells in order to induce cytotoxicity and to exhibit biocompatibility on normal cells for maintaining the proper function of healthy tissue.

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2016-1698, within PNCDI III and also by the Nucleu 4N/2016 Program from the same authority. The contributions of Dr. Cristian Mihailescu (XPS analysis) and Dr. Oana Marinica (magnetic measurements) are also greatly acknowledged.

References

  1. 1.
    T. Kołodziejczak-Radzimska, Jesionowski, Materials 7, 2833 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med 13, 1633 (2013)CrossRefGoogle Scholar
  3. 3.
    A.M. Moezzi, M.B. McDonagh, Cortie, Chem. Eng. J. 1, 185–186 (2012)Google Scholar
  4. 4.
    H. Yang, S. Nie Mater. Chem. Phys. 114, 279 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yilmaz, Phys. Scr. 89, 095802 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M. Yilmaz, Mater. Sci. Semicondr. Proc. 40, 99 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Yilmaza, M.L. Grillic, Philos. Mag. 96, 2125 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hartner, M. Ali, C. Schulz, M. Winterer, H. Wiggers, Nanotechnology 20, 445701 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D.Y. Inamdar, A.K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, J. Phys. Chem. C 115, 23671 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Wu, Z. Wei,1 L. Zhang, X. Wang, H. Yang, J. Jiang, J. Nanomater. 2014, 1 (2014)ADSGoogle Scholar
  11. 11.
    R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43, 2457 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Wu, T. He, W. Xu, Y. Li, J. Mater. Sci. Mater. El 27, 12155 (2016)CrossRefGoogle Scholar
  13. 13.
    R. Shao, L. Sun, L. Tang, Z. Chen, Chem. Eng. J. 217, 185 (2013)CrossRefGoogle Scholar
  14. 14.
    X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, RSC Adv. 3, 3309 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.J. Chen, F. Zhang, G.G. Zhao, X.Y. Fang, H.B. Jin, P. Gao, C.L. Zhu, M.S. Cao, G. Xiao, J. Phys. Chem. C 114, 9239 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Ghasemi, M. Heidary, M.A. Faramarzi, Z. Habibi, J. Mol. Catal. B Enzym. 100, 121 (2014)CrossRefGoogle Scholar
  18. 18.
    N. Baird, Y. Losovyj, E. Yu. N.V. Yuzik-Klimova, Z.B. Kuchkina, M.Pink Shifrina, B.D. Stein, D.G. Morgan, T. Wang, M.A. Rubin, A.I. Sidorov, E.M. Sulman, L.M. Bronstein, ACS Appl. Mater. Interfaces 8, 891 (2016)CrossRefGoogle Scholar
  19. 19.
    J.S. -Ghomi, S. Zahedi, Appl. Organomet. Chem. https://doi.org/10.1002/aoc.3763 (2017)
  20. 20.
    J. Li, Q. Wang, Z. Guo, H. Ma, Y. Zhang, D. Wang, Bin, Q.Wei, Sci. Rep. 6, 23558 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Wen, H. Li, K. Chen, Mater. Chem. Phys. 114, 30 (2009)CrossRefGoogle Scholar
  22. 22.
    W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, T. Tan, N. Huang, S. Radiman, R. Abd-Shukor, M.A.A. Hamid, C. Chia, J. Phys. Chem. C 114, 8212 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Nikazar, M. Alizadeh, R. Lalavi, M.H. Rostami, Iran. J. Environ. Health Sci. Eng. 12, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Carbone, P.D. Cozzoli, Nano Today 5, 449 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Wang, H. Dai, Chem. Soc. Rev. 42, 3088 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Wang, L. Chen, Y. Feng, H. Chen, Acc. Chem. Res. 46, 1636 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z.L. Wang, S. Sun, J. Am. Chem. Soc. 136, 16132 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, B. Huang, Z. Xie, Appl. Surf. Sci. 427, 693 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, App. Surf. Sci. 423, 197 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    N. Ghows, M.H. Entezari, Ultrason. Sonochem. 18, 629 (2011)CrossRefGoogle Scholar
  31. 31.
    T.-J. Yoon, K.N. Yu, E. Kim, J.S. Kim, B.G. Kim, S.-H. Yun, B.-H. Sohn, M.-H. Cho, J.-K. Lee, S.B. Park, Small 2, 209 (2006)Google Scholar
  32. 32.
    M.K. Singh, A. Agarwal, R.K. Swarnkar, R. Gopal, R.K. Kotnala, Sci. Adv. Mater. 4, 532 (2012)CrossRefGoogle Scholar
  33. 33.
    K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, X.W. Du, Langmuir, 26, 16652 (2010)CrossRefGoogle Scholar
  34. 34.
    K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, J. Am. Chem. Soc. 132, 9814 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Bai, Y.-H. Xu, J. Thomasand, J.-P. Wang, Nanotechnology 18, 065701 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    X. Wang, B. Xu, X. Liu, J. Guo, H. Ichinose, Diamond Relat. Mater. 15, 147 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    S. Sheen, S. Yang, K. Jun, M. Choi, J. Nanopart. Res. 11, 1767 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    F. Dumitrache, I. Morjan, R. Alexandrescu, R.E. Morjan, I. Voicu, I. Sandu, I. Soare, M. Ploscaru, C. Fleaca, V. Ciupina, G. Prodan, B. Rand, R. Brydson, A. Woodword, Diamond Relat. Mater. 13, 362 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F.Le Normand, O. Ersen, Phys. E 40, 2252 (2008)CrossRefGoogle Scholar
  40. 40.
    O. Bomatı-Miguel, Y. Leconte, M.P. Morales, N. Herlin-Boime, S. Veintemillas-Verdaguer, J. Magn. Magn. Mater. 290–291, 272 (2005)CrossRefGoogle Scholar
  41. 41.
    C. Fleaca, F. Dumitrache, E. Dutu, C. Luculescu, A.-M. Niculescu, A. Ilie, E. Vasile, UPB Sci. Bull. B 78, 43 (2016)Google Scholar
  42. 42.
    C.T. Fleaca, M. Scarisoreanu, I. Morjan, C. Luculescu, A.-M. Niculescu, A. Badoi, E. Vasile, G. Kovacs, Appl. Surf. Sci. 336, 226 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    L.-L. Han, H.L. Xin, S.A. Kulinich, L.-J. Yang, X.-W. Du, Langmuir 31, 8162 (2015)CrossRefGoogle Scholar
  44. 44.
    N. Sounderya, Y. Zhang, Recent Pat. Biomed. Eng. 1, 34 (2008)CrossRefGoogle Scholar
  45. 45.
    K. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Adv. Colloid Interf. Sci 209, 8 (2014)CrossRefGoogle Scholar
  46. 46.
    J.B. Hall, M. Dobrovolskaia, A. Patri, S. McNeil, Nanomedicine (London) 2, 789 (2007)CrossRefGoogle Scholar
  47. 47.
    M.Y. Hua, H. Liu, H. Yang, P. Chen, R. Tsai, C. Huang, I. Tseng, L. Lyu, C. Ma, H. Tang, T. Yen, K. Wei, Biomaterials 32, 516 (2011)CrossRefGoogle Scholar
  48. 48.
    S.C. Esparza-González, S. Sánchez-Valdés, S.N. Ramírez-Barrón, M.J. .Loera-Arias, J. Bernal, H.I. Meléndez-Ortiz, R. Betancourt-Galindo, Toxicol. In Vitro 37, 134 (2016)CrossRefGoogle Scholar
  49. 49.
    N.-H. Cho, T.-C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.-S. Yang, S. Kim, Y.Keun Kim, S.Y. Seong, Nature Nanotechnol. 6, 675 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    H.-M. Xiong, Adv. Mater. 25, 5329 (2013)CrossRefGoogle Scholar
  51. 51.
    J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010)CrossRefGoogle Scholar
  52. 52.
    G. Bisht, S. Rayamajhi, K.C. Biplad, S.N. Paudel, D. Karna, B.G. Shrestha, Nanoscale Res. Lett. 11, 1 (2016)CrossRefGoogle Scholar
  53. 53.
    M. Roeinfard, A. Bahari, J. Supercond.Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4154-x Google Scholar
  54. 54.
    C. Saikia, M.K. Das, A. Ramteke, T.K. Maji, Carbohyd. Polym. 157, 391 (2017)CrossRefGoogle Scholar
  55. 55.
    H. Peng, B. Cui, G. Li, Y. Wang, N. Li, Z. Chang, Y. Wang, Mat. Sci. Eng. C 46, 253 (2015)CrossRefGoogle Scholar
  56. 56.
    H. Peng, C. Hu, J. Hu, X. Tian, T. Wu, Micropor. Mesopor. Mater 226, 140e145 (2016)CrossRefGoogle Scholar
  57. 57.
    H. Zhang, N. Patel, S. Ding, J. Xiong, P. Wu, Biomater Sci., 4(2) (2016).  https://doi.org/10.1039/c5bm00361j
  58. 58.
    H. Zhang, L. Guo, S. Ding, J. Xiong, B. Chen, Oncotarget 7, 36602 (2016)CrossRefGoogle Scholar
  59. 59.
    X. Huang, X. Zheng, C. Yi, S. Yin, NANO: Brief Rep. Rev. 11, 1,650,057–1,650,051 (2016)CrossRefGoogle Scholar
  60. 60.
    J.C. Beltran-Huarac, S.P. Singh, M.S. Tomar, S. Peña, L. Rivera, O.J. Perales-Perez, Mater. Res. Soc. Symp. Proc. 1257, 1257-O06–1257-O04 (2010)CrossRefGoogle Scholar
  61. 61.
    K. Patel, B. Sundar Raj, Y. Chen, X. Lou, Colloid Surf. B 150, 317 (2017)CrossRefGoogle Scholar
  62. 62.
    J.-W. Yun, J.-H. Yoon, B.-C. Kang, N.-H. Cho, S.H. Seok, S.-K. Min, J.H. Min, J.-H. Che, Y.K. Kim, J. Appl. Toxicol. 35, 593 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Singh, K.C. Barick, D. Bahadur, Powder Technol. 269, 513 (2015)CrossRefGoogle Scholar
  64. 64.
    W.-Y. Chen, Y.-C. Chen, Anal. Bioanal. Chem. 398, 2049 (2010)CrossRefGoogle Scholar
  65. 65.
    X. Huang, J. Lu, D. Yue, Y. Fan, M. Zhang, C. Yi, X. Wang, J. Pan. Nanotechnol. 26, 125101 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    F. Dumitrache, I. Morjan, C. Fleaca, A. Badoi, G. Manda, S. Pop, D. Marta, G. Huminic, A. Huminic, L. Vekas, C. Daia, O. Marinica, C. Luculescu, A.-M. Niculescu, Appl. Surf. Sci. 336, 297 (2015)ADSCrossRefGoogle Scholar
  67. 67.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983)CrossRefGoogle Scholar
  68. 68.
    M. Roesslein, C. Hirsch, J.P. Kaiser, H.F. Krug, P. Wick, Int. J. Mol. Sci. 14, 24320 (2013)CrossRefGoogle Scholar
  69. 69.
    F. Dumitrache, I. Morjan, C. Fleaca, R. Birjega, E. Vasile, V. Kuncser, R. Alexandrescu, Appl. Surf. Sci. 257, 5265 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F. Le Normand, A. Derory, Appl. Surf. Sci. 255, 5386 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, C. Li, RSC Adv. 7, 15168 (2017)CrossRefGoogle Scholar
  72. 72.
    X. Liu, D. Geng, P. Shang, H. Meng, F. Yang, B. Li, D. Kang, Z. Zhang, J. Phys. D: Appl. Phys. 41, 175006 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    S. Singh, K.C. Barick, D. Bahadur, J. Mater. Chem. A 1, 3325 (2013)CrossRefGoogle Scholar
  74. 74.
    G.Y. Liou, P. Storz, Free Radic. Res. 44(5), 479 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Lavinia Gavrila-Florescu
    • 1
  • Florian Dumitrache
    • 1
  • Mihaela Balas
    • 2
  • Claudiu Teodor Fleaca
    • 1
  • Monica Scarisoreanu
    • 1
  • Iuliana P. Morjan
    • 1
  • Elena Dutu
    • 1
  • Alina Ilie
    • 1
    • 3
  • Ana-Maria Banici
    • 1
    • 5
  • Claudiu Locovei
    • 3
  • Gabriel Prodan
    • 4
  1. 1.National Institute for Lasers, Plasma and Radiation Physics (NILPRP)MagureleRomania
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharest 5Romania
  3. 3.Faculty of PhysicsUniversity of BucharestMagureleRomania
  4. 4.Faculty of Mechanical, Industrial and Marine Engineering“Ovidius” UniversityConstantaRomania
  5. 5.Faculty of Mathematics and Natural SciencesUniversity of CraiovaCraiovaRomania

Personalised recommendations