Advertisement

Applied Physics A

, 123:768 | Cite as

Atomic layer deposition of \(\text {HfO}_2\) for integration into three-dimensional metal–insulator–metal devices

  • Loïc Assaud
  • Kristina Pitzschel
  • Maïssa K. S. Barr
  • Matthieu Petit
  • Guillaume Monier
  • Margrit Hanbücken
  • Lionel Santinacci
Article

Abstract

\(\text {HfO}_2\) nanotubes have been fabricated via a template-assisted deposition process for further use in three-dimensional metal–insulator–metal (MIM) devices. \(\text {HfO}_2\) thin layers were grown by Atomic Layer Deposition (ALD) in anodic alumina membranes (AAM). The ALD was carried out using tetrakis(ethylmethylamino)hafnium and water as Hf and O sources, respectively. Long exposure durations to the precursors have been used to maximize the penetration depth of the \(\text {HfO}_2\) layer within the AAM and the effect of the process temperature was investigated. The morphology, the chemical composition, and the crystal structure were studied as a function of the deposition parameters using transmission and scanning electron microscopies, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. As expected, the \(\text {HfO}_2\) layers grown at low-temperature (\(T\,=\,150\, ^\circ \text {C}\)) were amorphous, while for a higher temperature (\(T=\,250\,^\circ \text {C}\)), polycrystalline films were observed. The electrical characterizations have shown better insulating properties for the layers grown at low temperature. Finally, \(\text {TiN}/\text {HfO}_2/\text {TiN}\) multilayers were grown in an AAM as proof-of-concept for three-dimensional MIM nanostructures.

Notes

Acknowledgements

The authors acknowledge D. Chaudanson and S. Nitsche for their precious help with the electron microscopy, V. Heresanu for XRD measurements and interpretation, and S. Lavandier for the electrical measurements. This work was supported by the European Regional Development Fund (ERDF), the PACA Regional Council, the French Ministry of Higher Education and Research, and the CNRS.

References

  1. 1.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M. Gutsche. Memory cell with a stacked capacitor (2001). US Patent 6,207,524Google Scholar
  3. 3.
    A. Callegari, E. Cartier, M. Gribelyuk, H.F. Okorn-Schmidt, T. Zabel, J. Appl. Phys. 90(12), 6466 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. Toledano-Luque, E. San Andrés, A. del Prado, I. Mártil, M.L. Lucía, G. González-Díaz, F.L. Martínez, W. Bohne, J. Röhrich, E. Strub, J. Appl. Phys. 102(4), 044106 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    C.T. Tsai, T.C. Chang, P.T. Liu, P.Y. Yang, Y.C. Kuo, K.T. Kin, P.L. Chang, F.S. Huang, Appl. Phys. Lett. 91, 012109 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    R.C. Smith, T. Ma, N. Hoilien, L.Y. Tsung, M.J. Bevan, L. Colombo, J. Roberts, S.A. Campbell, W.L. Gladfelter, Adv. Mater. Opt. Electron. 10, 105 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, T. Uustare, J. Cryst. Growth 220, 105 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    S.M. George, Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  9. 9.
    J.W. Elam, D. Routkevitch, P.P. Mardilovich, S.M. George, Chem. Mater. 15, 3507 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, H. Fjellvag, J. Mater. Chem. 19, 8767 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Wu, L. Assaud, C. Kryschi, B. Capon, C. Detavernier, L. Santinacci, J. Bachmann, J. Mater. Chem. A 3, 5971 (2015)CrossRefGoogle Scholar
  12. 12.
    M.K.S. Barr, L. Assaud, N. Brazeau, M. Hanbücken, S. Ntais, L. Santinacci, E.A. Baranova, J. Phys. Chem. C 121(33), 17727 (2017)CrossRefGoogle Scholar
  13. 13.
    M.G. Willinger, G. Neri, E. Rauwel, A. Bonavita, G. Micali, N. Pinna, Nano Lett. 8, 4201 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K. Pitzschel, J. Bachmann, J.M. Montero-Moreno, J. Escrig, D. Goerlitz, K. Nielsch, Nanotechnology 23, 495718 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Banerjee, I. Perez, L. Lecordier-Henn, S.B. Lee, G.W. Rubloff, Nat. Nanotechnol. 4, 292 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    L.C. Haspert, S.B. Lee, G.W. Rubloff, ACS Nano 6, 3528 (2012)CrossRefGoogle Scholar
  17. 17.
    K.B. Shelimov, D.N. Davydov, M. Moskovits, Appl. Phys. Lett. 77, 1722 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    F. Roozeboom, R. Elfrink, J.F. Verhoeven, J. van den Meerakker, F. Holthuysen, Microelectron. Eng. 53, 581 (2000)CrossRefGoogle Scholar
  19. 19.
    Sw Chang, J. Oh, S.T. Boles, C.V. Thompson, Appl. Phys. Lett. 96, 153108 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L.J. Li, B. Zhu, S.J. Ding, H.L. Lu, Q.Q. Sun, A. Jiang, D. Zhang, C. Zhu, Nanoscale Res. Lett. 7, 1 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    K. M., M. Ritala, M. Leskelä, O.W. E, J. Carstensen, H. Föll, Microelectron. Eng. 84, 313 (2007)CrossRefGoogle Scholar
  22. 22.
    J.H. Klootwijk, K.B. Jinesh, D. W, J.F. Verhoeven, F.C. Van Den Heuvel, H.D. Kim, D. Blin, M.A. Verheijen, R.G.R. Weemaes, M. Kaiser, J.J.M. Ruigrok, F. Roozeboom, IEEE Electron. Dev. Lett. 29, 740 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    T. Bertaud, C. Bermond, T. Lacrevaz, C. Vallée, Y. Morand, B. Fléchet, A. Farcy, M. Gros-Jean, S. Blonkowski, Microelectron. Eng. 87(3), 301 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Matveyev, K. Egorov, A. Markeev, A. Zenkevich, J. Appl. Phys. 117, 044901 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    L. Assaud, K. Pitzschel, M. Hanbücken, L. Santinacci, ECS J. Solid State Sci. Technol. 3, P253 (2014)CrossRefGoogle Scholar
  26. 26.
    V. Miikkulainen, M. Leskela, R. Ritala, R.L. Puurunen, J. Appl. Phys. 113, 021301 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    R.G. Gordon, D. Hausmann, E. Kim, J. Shepard, Chem. Vap. Depos. 9, 73 (2003)CrossRefGoogle Scholar
  28. 28.
    I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S.J. Son, S.B. Lee, G.W. Rubloff, Small 4, 1223 (2008)CrossRefGoogle Scholar
  29. 29.
    D. Gu, H. Baumgart, G. Namkoong, T.M. Abdel-Fattah, Electrochem. Solid-State Lett. 12(4), K25 (2009)CrossRefGoogle Scholar
  30. 30.
    M.J. Choi, H.H. Park, D.S. Jeong, J.H. Kim, J.S. Kim, S.K. Kim, Appl. Surf. Sci. 301, 451 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Aarik, A. Aidla, A.A. Kiisler, T. Uustare, V. Sammelselg, Thin Solid Films 340, 110 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang, R.G. Gordon, J. Electrochem. Soc. 152(3), G213 (2005)CrossRefGoogle Scholar
  33. 33.
    X. Fan, H. Liu, B. Zhong, C. Fei, X. Wang, Q. Wang, Appl. Phys. A 119, 957 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    E. Moyen, L. Santinacci, L. Masson, H. Sahaf, M. Macé, L. Assaud, M. Hanbücken, Int. J. Nanotechnol. 9, 246 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E. Moyen, L. Santinacci, L. Masson, W. Wulfhekel, M. Hanbucken, Adv. Mater. 24(37), 5094 (2012). Kindly check and confirm the edit made in author names in reference [36].CrossRefGoogle Scholar
  37. 37.
    K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä, Chem. Vap. Depos. 8, 199 (2002)CrossRefGoogle Scholar
  38. 38.
    Y. Senzaki, S. Park, H. Chatham, L. Bartholomew, W. Nieveen, J. Vac. Sci. Technol. A 22, 1175 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    P.D. Kirsch, M.A. Quevedo-Lopez, H.J. Li, Y. Senzaki, J.J. Peterson, S.C. Song, S.A. Krishnan, N. Moumen, J. Barnett, G. Bersuker, P.Y. Hung, B.H. Lee, T. Lafford, Q. Wang, D. Gay, J.G. Ekerdt, J. Appl. Phys. 99(2), 023508 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    C. Morant, L. Galán, J.M. Sanz, Surf. Interface Anal. 16(1–12), 304 (1990)CrossRefGoogle Scholar
  41. 41.
    D. Barreca, A. Milanov, R.A. Fischer, A. Devi, E. Tondello, Surf. Sci. Spectra 14, 34–40 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kumar, S. Mondal, K.S.R. Koteswara Rao, Appl. Phys. A 122, 1027 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    K. Xu, A.P. Milanov, H. Parala, C. Wenger, C. Baristiran-Kaynak, K. Lakribssi, T. Toader, C. Bock, D. Rogalla, H.W. Becker, U. Kunze, A. Devi, Chem. Vap. Depos. 18(1–3), 27 (2012)CrossRefGoogle Scholar
  44. 44.
    X. Zhao, D. Vanderbilt, Phys. Rev. B 65, 233106 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    E.P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003)CrossRefGoogle Scholar
  46. 46.
    J. Choi, Y. Mao, J. Chang, Mater. Sci. Eng. R 72(6), 97 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, CINAMMarseilleFrance
  2. 2.ICMMO-ERIEE, Université Paris-Sud / Université Paris-Saclay, CNRSOrsayFrance
  3. 3.Université Clermont Auvergne, Université Blaise Pascal, CNRS, Institut PascalClermont-FerrandFrance

Personalised recommendations