Applied Physics A

, 123:760 | Cite as

Observation of an fcc–Co nanolayer grown between CoO and amorphous Si

  • D. Lenk
  • A. Ullrich
  • V. I. Zdravkov
  • R. Morari
  • A. S. Sidorenko
  • S. Horn
  • R. Tidecks


The thermodynamically crystallographic phase of Co at ambient conditions is hexagonal-close-packed. However, it has been found that given a crystallographic support from a suitable substrate, the high-temperature face-centered-cubic phase can be stabilized in thin films. We performed cross-sectional high-resolution transmission electron microscopy on a Si substrate/Si buffer/Co/CoO/Cu\(_{41}\)Ni\(_{59}\)/Nb/Cu\(_{41}\)Ni\(_{59}\)/Si-cap heterostructure (all layer thicknesses in the nanometer range). We analyzed lattice spacings and angles of the Co layer and neighbouring layers. While in the present study, there is no obvious support for an fcc structure by the amorphous Si buffer and the CoO (spinel structure), only an fcc phase of the Co layer (of about 5 nm thickness) is in agreement with the obtained results. However, the detailed mechanism of phase stabilization remains unresolved.



The authors are grateful to S. Heidemeyer, B. Knoblich, and W. Reiber for TEM sample preparation.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. HO 955/9-1.

The partial support by STCU (Grant No. 5982, A.S.S. and R.M.) is acknowledged.


  1. 1.
    J. Giber, R. Drube, V. Dose, Appl. Phys. A 52, 167 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Meng, S. Guo, X. Zhuo, S. Veintemillas-Verdaguer, J. Alloy Compd. 580, 187 (2013)CrossRefGoogle Scholar
  3. 3.
    J.E. Fisher, Thin Solid Films 5, 53 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    H.L. Gaigher, N.G. van der Berg, Electrochim. Acta 21, 45 (1976)CrossRefGoogle Scholar
  5. 5.
    H. Li, B.P. Tonner, Surface Sci. 237, 141 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. de Miguel, R. Miranda, S. Ferrer, Vacuum 41, 503 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Cerdá, P.L. de Andres, A. Cebollada, R. Miranda, E. Navas, P. Schuster, C.M. Schneider, J. Kirschner, J. Phys. Condens. Matter 5, 2055 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    C. Rath, J.E. Prieto, S. Müller, R. Miranda, K. Heinz, Phys. Rev. B 55, 10791 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    C. Chappert, P. Bruno, J. Appl. Phys. 64, 5736 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Beaujour, W. Chen, A.D. Kent, J.Z. Sun, J. Appl. Phys. 99, 08N503 (2006)CrossRefGoogle Scholar
  11. 11.
    C.H. Lee, H. He, F.J. Lamelas, W. Vavra, C. Uher, R. Clarke, Phys. Rev. B 42, 1066(R) (1990)ADSCrossRefGoogle Scholar
  12. 12.
    W. Wernsdorfer, C. Thirion, N. Demoncy, H. Pascard, D. Mailly, J. Magn. Magn. Mater. 242–245, 132 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Lenk, R. Morari, V.I. Zdravkov, A.Ullrich, G.Obermeier, C.Müller, A.S. Sidorenko, H.A. Krug von Nidda, S. Horn, L.R. Tagirov, R. Tidecks, Full-Switching FSF-Type Superconducting Spin-Triplet Magnetic Random Access Memory Element (accepted for publication in Phys. Rev. B, 2017)Google Scholar
  14. 14.
    L. Gragnaniello, S. Agnoli, G. Parteder, A. Barolo, F. Bondino, F. Allegretti, S. Surnev, G. Granozzi, F.P. Netzer, Surf. Sci. 604, 2002 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Zdravkov, D. Lenk, R. Morari, A. Ullrich, G. Obermeier, C. Müller, H.A. Krug von Nidda, A.S. Sidorenko, S. Horn, R. Tidecks, L.R. Tagirov, Appl. Phys. Lett. 103, 062604 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Kehrle, The Fulde-Ferrell Larkin-Ovchinnikov Like State in Bilayers and Trilayers of Superconducting and Ferromagnetic Thin Films (Doctoral Thesis, Universität Augsburg, 2012)Google Scholar
  17. 17.
    J. Kehrle, V.I. Zdravkov, G. Obermeier, J. Garcia-Garcia, A. Ullrich, C. Müller, R. Morari, A.S. Sidorenko, S. Horn, L.R. Tagirov, R. Tidecks, Ann. Phys. 524, 37 (2012)CrossRefGoogle Scholar
  18. 18.
    E.A. Owen, D.M. Jones, Proc. Phys. Soc. B 67, 456 (1954)ADSCrossRefGoogle Scholar
  19. 19.
    C. Kittel, Einführung in die Festkörperphysik, 8th edn. (R. Oldenbourg Verlag, München, 1989)Google Scholar
  20. 20.
    P.J. van der Zaag, J.A. Borchers, Antiferromagnetic-Ferromagnetic Oxide Multilayers: Fe3O4-Based Systems as a Model, in Magnetic Properties of Antiferromagnetic Oxide Materials, ed. by L. Duò, M. Finazzi, F. Ciccacci (Wiley-VCH, Weinheim, 2010)Google Scholar
  21. 21.
    L. Vegard, Z. Phys. 5, 17 (1921)ADSCrossRefGoogle Scholar
  22. 22.
    L. Vegard, Z. Kristallogr. 67, 239 (1928)Google Scholar
  23. 23.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    W.P. Davey, Phys. Rev. 25, 753 (1925)ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Singal, T.P. Das, Phys. Rev. B 16, 5068 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    C.A.F. Vaz, E.I. Altman, V.E. Henrich, Phys. Rev. B 81, 104428 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 2nd edn. (Wiley, Chichester, 2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Experimentalphysik II, Institut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASMKishinevMoldova

Personalised recommendations