Applied Physics A

, 124:9 | Cite as

Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation

  • Linyan Zhao
  • Lian Li
  • Yixi Wang
  • Jianning Wu
  • Guihua Meng
  • Zhiyong LiuEmail author
  • Xuhong Guo


Oily wastewater caused by industrial production and crude oil leakage has attracted worldwide attention. Here, a thermo- and pH dual-responsive biodegradable cellulose-based aerogel for oil–water separation was designed and prepared via surface-initiated atom transfer radical polymerization (ATRP) of non-fluorine-containing 2-dimethylaminoethyl methacrylate (DMAEMA). The cellulose-based aerogel exhibit switchable superhydrophilicity with a water contact angle (WCA) of 0° and hydrophobicity (WCA 130°) by modulating pH or temperature. The functionalized cellulose-based aerogels could be used to absorb the water under 60 °C (pH 7.0) and pH is 1.0 (T = 25 °C), while absorb oil underwater when the temperature is above 60 °C (pH 7.0) or pH is 13.0 (T = 25 °C). So this adsorbent were suitable for the separation of water-rich or oil-rich oil/water mixtures, and it could adsorb oil over ten times its own weight, and had a good reusability. What’s more, the cellulose-based aerogel is green, low cost, and environmental friendly, which makes it a promising candidate to be used for oil–water separation.



This work was supported financially by funding from the National Natural Science Foundation of China (21367022 and 51662036) and Bingtuan Innovation Team in Key Areas (2015BD003).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

339_2017_1358_MOESM1_ESM.doc (32 kb)
Supplementary material (DOC 32 KB)

Movie S1: Absorption of water at 25 oC after immersing in the 0.1 M HCl solution with pH of 1.0 (MP4 20075 KB)

Movie S2 Absorption of oil at 25 oC after immersing in the 0.1 M NaOH solution with pH of 13.0 (MP4 40339 KB)

Movie S3 Absorption of dichloromethane at 25 °C (MP4 33088 KB)

Movie S4 Absorption of dichloromethane at 60 °C (MP4 54210 KB)


  1. 1.
    D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Energ. Environ. Sci 5, 7908 (2012)CrossRefGoogle Scholar
  2. 2.
    Y.Z. Zhu, D. Wang, L. Jiang, J. Jin, NPG Asia Mater 6, e101 (2014)CrossRefADSGoogle Scholar
  3. 3.
    A. Almasian, M.L. Jalali, G.C. Fard, L. Maleknia, Chem. Eng. J 326, 1232 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Calcagnile, D. Fragouli, I.S. Bayer, G.C. Anyfantis, L. Martiradonna, P.D. Cozzoli, R. Cingolani, A. Athanassiou, ACS Nano 6, 5413 (2012)CrossRefGoogle Scholar
  5. 5.
    S.Y. Yuan, C. Chen, A. Raza, R.X. Song, T.J. Zhang, S.O. Pehkonen, B. Liang, Chem. Eng. J 328, 497 (2017)CrossRefGoogle Scholar
  6. 6.
    U.B. Gunatilake, J. Bandara, J. Environ. Manag 191, 96 (2017)CrossRefGoogle Scholar
  7. 7.
    G.J. Dunderdale, M.W. England, T. Sato, C. Urata, A. Hozumi, Macromol. Mater. Eng 301, 1032 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Mulyadi, Z. Zhang, Y.L. Deng, ACS Appl. Mater. Interfaces 8, 2732 (2016)CrossRefGoogle Scholar
  9. 9.
    G.H. Meng, H.L. Peng, J.N. Wu, Y.X. Wang, H. Wang, Z.Y. Liu, X.H. Guo, Fiber. Polym 18, 706 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Khosravi, S. Azizian, ACS Appl. Mater. Interfaces 7, 25326 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Shieh, F.J. Hou, Y.C. Chen, H.M. Chen, S.P. Yang, C.C. Cheng, H.L. Chen, Adv. Mater 22, 597 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Balram, S. Santhanagopalan, B. Hao, Y.K. Yap, D.D. Meng, Adv. Funct. Mater 26, 2571 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Checco, A. Rahman, C.T. Black, Adv. Mater 26, 886 (2014)CrossRefGoogle Scholar
  14. 14.
    J.P. Zhang, S. Seeger, Adv. Funct. Mater 21, 4699 (2011)CrossRefGoogle Scholar
  15. 15.
    H.S. Lim, J.H. Baek, K. Park, H.S. Shin, J. Kim, J.H. Cho, Adv. Mater 22, 2138 (2010)CrossRefGoogle Scholar
  16. 16.
    W.Y. Fang, L.B. Liu, T. Li, Z. Dang, C.D. Qiao, J.K. Xu, Y.Y. Wang, Chem-Eur. J 22, 878 (2016)CrossRefGoogle Scholar
  17. 17.
    K. Kurogi, H. Yan, H. Mayama, K. Tsujii, J. Colloid Interface Sci 312, 156 (2007)CrossRefADSGoogle Scholar
  18. 18.
    H. Su, Y.Q. Xu, W. Zhang, Y. Liu, J. Li, Appl. Surf. Sci 258, 2319 (2012)CrossRefADSGoogle Scholar
  19. 19.
    R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 5, 16025 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Gupta, N.H. Tai, J. Mater. Chem. A 4, 1550 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Shi, W.B. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, L. Jiang, Adv. Mater 25, 2422 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Mondal, S.R. Wickramasinghe, Sep. Purif. Technol 90, 231 (2012)CrossRefGoogle Scholar
  23. 23.
    L.X. Xu, N. Liu, Y.Z. Cao, F. Lu, Y.N. Chen, X.Y. Zhang, L. Feng, Y. Wei, ACS Appl. Mater. Interfaces 6, 13324 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.Z. Cao, N. Liu, C.K. Fu, K. Li, L. Tao, L. Feng, Y. Wei, ACS Appl. Mater. Interfaces 6, 2026 (2014)CrossRefGoogle Scholar
  25. 25.
    J.D. Wu, C. Zhang, D.J. Jiang, S.F. Zhao, Y.L. Jiang, G.Q. Cai, J.P. Wang, RSC Adv 6, 24076 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Wang, Z.G. Guo, Chem. Commun 49, 9416 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.H. Xiang, J.H. Shen, Y.Z. Wang, F. Liu, L.X. Xue, RSC Adv 5, 23530 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Kwon, A.K. Kota, Y.X. Li, A. Sohani, J.M. Mabry, A. Tuteja, Adv. Mater 24, 3666 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Joo, J. Shin, J. Kim, J.B. You, Y. Yoo, M.J. Kwak, M.S. Oh, S.G. Im, J. Am. Chem. Soc. 139, 2329 (2017)CrossRefGoogle Scholar
  30. 30.
    T.T. Li, J. Shen, Z. Zhang, S. Wang, D.Y. Wei, RSC Adv 6, 40656 (2016)CrossRefGoogle Scholar
  31. 31.
    H.L. Liu, X.Q. Zhang, S.T. Wang, L. Jiang, Small 11, 3338 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Prathap, K.M. Sureshan, Angew. Chem. Int. Edit 129, 9533 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Sehaqui, U.P.D. Larraya, P. Tingaut, T. Zimmermann, Soft Matter 11, 5294 (2015)CrossRefADSGoogle Scholar
  34. 34.
    Y.X. Wang, L.Y. Zhao, H.L. Peng, J.N. Wu, Z.Y. Liu, X.H. Guo, J. Chem. Eng. Data 61, 3266 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Iwamoto, A. Isogai, T. Iwata, Biomacromolecules 12, 831 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Ma, Q. Mi, J. Yu, J.S. He, J. Zhang, Prog. Chem 26, 796 (2014)Google Scholar
  37. 37.
    H.L. Peng, H. Wang, J.N. Wu, G.H. Meng, Y.X. Wang, Y.L. Shi, Z.Y. Liu, X.H. Guo, Ind. Eng. Chem. Res 55, 832 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Sun, S.X. Zhou, B. You, L.M. Wu, J. Mater. Chem. A 1, 10646 (2013)CrossRefGoogle Scholar
  39. 39.
    W.J. Ma, S.K. Samal, Z.C. Liu, R.H. Xiong, S.C. De Smedt, B. Bhushan, Q.L. Zhang, C.B. Huang, J. Membrane Sci 537, 128 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Peng, J. Wu, Y. Wang, H. Wang, Z. Liu, Y. Shi, X. Guo, Appl. Phys. A 122, 516 (2016)CrossRefADSGoogle Scholar
  41. 41.
    L.H. Yu, G.Z. Hao, Q.Q. Liang, W. Jiang, Ind. Eng. Chem. Res 54, 9440 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Linyan Zhao
    • 1
    • 2
  • Lian Li
    • 1
    • 2
  • Yixi Wang
    • 1
    • 2
  • Jianning Wu
    • 1
    • 2
  • Guihua Meng
    • 1
    • 2
  • Zhiyong Liu
    • 1
    • 2
    Email author
  • Xuhong Guo
    • 1
    • 2
    • 3
  1. 1.School of Chemistry and Chemical EngineeringShihezi UniversityShiheziPeople’s Republic of China
  2. 2.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang BingtuanShiheziPeople’s Republic of China
  3. 3.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations