Applied Physics A

, 123:727 | Cite as

Stabilized gold nanoparticles by laser ablation in ferric chloride solutions

  • M. I. Nouraddini
  • M. RanjbarEmail author
  • P. J. Dobson
  • H. Farrokhpour
  • C. Johnston
  • K. Jurkschat


In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.


  1. 1.
    P.K. Jain et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43(5), 597–601 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Bartolomé et al., Magnetic polarization of noble metals by Co nanoparticles in M-capped granular multilayers (M=Cu, Ag, and Au): an X-ray magnetic circular dichroism study. Phys. Rev. B—Condens. Matter Mater. Phys. 77(18), 184420 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    N. Lopez et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223(1), 232–235 (2004)CrossRefGoogle Scholar
  5. 5.
    C. Gutiérrez-Sánchez et al., Gold nanoparticles as electronic bridges for laccase-based biocathodes. J. Am. Chem. Soc. 134(41), 17212–17220 (2012)CrossRefGoogle Scholar
  6. 6.
    J.P. Sylvestre et al., Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution. Appl. Phys. A: Mater. Sci. Process. 80(4), 753–758 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H. Qian et al., Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132(24), 8280–8281 (2010)CrossRefGoogle Scholar
  8. 8.
    M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Wang, D.-j.. Guo, H.-l.. Li, High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178(6), 1996–2000 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Skrabalak et al., Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008)CrossRefGoogle Scholar
  11. 11.
    M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586), 1536–1540 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P.L. Stiles et al., Surface-enhanced Raman spectroscopy, in Annual Review of Analytical Chemistry. 2008. pp. 601–626Google Scholar
  15. 15.
    J.N. Anker et al., Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006)CrossRefGoogle Scholar
  17. 17.
    X. Huang et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006)CrossRefGoogle Scholar
  18. 18.
    E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)CrossRefGoogle Scholar
  19. 19.
    P.K. Jain et al., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248 (2006)CrossRefGoogle Scholar
  20. 20.
    K.L. Kelly et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003)CrossRefGoogle Scholar
  21. 21.
    K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, in Annual Review of Physical Chemistry. 2007. pp. 267–297Google Scholar
  22. 22.
    G.K. Darbha et al., Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130(25), 8038–8043 (2008)CrossRefGoogle Scholar
  23. 23.
    Z. Li et al., From redox gating to quantized charging. J. Am. Chem. Soc. 132(23), 8187–8193 (2010)CrossRefGoogle Scholar
  24. 24.
    H.L. Jiang et al., Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 133(5), 1304–1306 (2011)CrossRefGoogle Scholar
  25. 25.
    R.W.J. Scott et al., Bimetallic palladium—Gold dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 126(47), 15583–15591 (2004)CrossRefGoogle Scholar
  26. 26.
    T. Shibata et al., Size-dependent spontaneous alloying of Au-Ag nanoparticles. J. Am. Chem. Soc. 124(40), 11989–11996 (2002)CrossRefGoogle Scholar
  27. 27.
    J. Gao et al., Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28(9), 4464–4471 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Bao et al., Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1(4), 293–298 (2007)CrossRefGoogle Scholar
  29. 29.
    C.S. Levin et al., Magnetic–plasmonic core–shell nanoparticles. ACS nano 3(6), 1379–1388 (2009)CrossRefGoogle Scholar
  30. 30.
    T.A. Larson et al., Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18(32), 325101 (2007)CrossRefGoogle Scholar
  31. 31.
    P.K. Jain et al., Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett. 9(4), 1644–1650 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    F. Pineider et al., Spin-polarization transfer in colloidal magnetic-plasmonic au/iron oxide hetero-nanocrystals. ACS Nano 7(1), 857–866 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Mahapatra et al., Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J. Nanobiotechnol. 13(1), (2015)Google Scholar
  34. 34.
    V. Amendola et al., Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 10(12), 2476–2486 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Gao et al., Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6(1), 234–240 (2011)CrossRefGoogle Scholar
  36. 36.
    Z. Ban et al., The synthesis of core-shell iron@gold nanoparticles and their characterization. J. Mater. Chem. 15(43), 4660–4662 (2005)CrossRefGoogle Scholar
  37. 37.
    B. Ravel, E. Carpenter, V. Harris, Oxidation of iron in iron/gold core/shell nanoparticles. J. Appl. Phys. 91(10), 8195–8197 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    E.V. Shevchenko et al., Gold/iron oxide core/hollow-shell nanoparticles. Adv. Mater. 20(22), 4323–4329 (2008)CrossRefGoogle Scholar
  39. 39.
    C.L. Ren et al., Facile method for preparing gold coated iron oxide nanoparticles. Mater. Res. Innov. 15(3), 208–211 (2011)CrossRefGoogle Scholar
  40. 40.
    Z. Li, A. Friedrich, A. Taubert, Gold microcrystal synthesis via reduction of HAuCl4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride. J. Mater. Chem. 18(9), 1008–1014 (2008)CrossRefGoogle Scholar
  41. 41.
    D. Shore et al., Electrodeposited Fe and Fe–Au nanowires as MRI contrast agents. Chem. Commun. 52, 12634–12637 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Scaramuzza, S. Agnoli, V. Amendola, Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys. 17(42), 28076–28087 (2015)CrossRefGoogle Scholar
  43. 43.
    P. Mukherjee et al., Formation of non-equilibrium Fe-Au solid solutions in nanoclusters. Appl. Phys. Lett. 102(24), 243103 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    F. Mafuné et al., Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105(22), 5114–5120 (2001)CrossRefGoogle Scholar
  45. 45.
    T. Sakka et al., Laser ablation at solid-liquid interfaces: an approach from optical emission spectra. J. Chem. Phys. 112(19), 8645–8653 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    S. Barcikowski, G. Compagnini, Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013)CrossRefGoogle Scholar
  47. 47.
    G. Compagnini, A.A. Scalisi, O. Puglisi, Ablation of noble metals in liquids: A method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 4(12), 2787–2791 (2002)CrossRefGoogle Scholar
  48. 48.
    S. Reich et al., Pulsed laser ablation in liquids: Impact of the bubble dynamics on particle formation. J. Colloid Interface Sci. 489, 106–113 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    J. Zhang, C.Q. Lan, Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mater. Lett. 62(10–11), 1521–1524 (2008)CrossRefGoogle Scholar
  50. 50.
    J. Zhang, M. Chaker, D. Ma, Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci. 489, 138–149 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    V. Amendola, M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009)CrossRefGoogle Scholar
  52. 52.
    G. Palazzo et al., On the stability of gold nanoparticles synthesized by laser ablation in liquids. J. Colloid Interface Sci. 489, 47–56 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    V. Amendola et al., Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. J. Colloid Interface Sci. 489, 18–27 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Z. Sheykhifard et al., Direct fabrication of Au/Pd(II) colloidal core-shell nanoparticles by pulsed laser ablation of gold in PdCl2 Solution. J. Phys. Chem. C 119(17), 9534–9542 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Liao et al., Linear aggregation of gold nanoparticles in ethanol. Colloids Surf., A 223(1–3), 177–183 (2003)CrossRefGoogle Scholar
  56. 56.
    K.G. Moodley, M.J. Nicol, Kinetics of reduction of gold (III) by platinum (II) and iron (III) in aqueous chloride solutions. J. Chem. Soc., Dalton Trans. 10, 993–996 (1977)CrossRefGoogle Scholar
  57. 57.
    A. Letzel et al., Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J. Phys. Chem. C 121(9), 5356–5365 (2017)CrossRefGoogle Scholar
  58. 58.
    S. Petersen, S. Barcikowski, In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 19(8), 1167–1172 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. I. Nouraddini
    • 1
  • M. Ranjbar
    • 1
    Email author
  • P. J. Dobson
    • 2
  • H. Farrokhpour
    • 3
  • C. Johnston
    • 4
  • K. Jurkschat
    • 4
  1. 1.Department of PhysicsIsfahan University of TechnologyIsfahanIran
  2. 2.The Queen’s CollegeOxfordUK
  3. 3.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  4. 4.Department of MaterialsOxford University, Begbroke Science ParkOxfordUK

Personalised recommendations