Advertisement

Applied Physics A

, 123:735 | Cite as

Effects of surface condition on the work function and valence-band position of ZnSnN2

  • Amanda M. Shing
  • Yulia Tolstova
  • Nathan S. Lewis
  • Harry A. Atwater
Article
  • 317 Downloads

Abstract

ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II–IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

Notes

Acknowledgements

We gratefully acknowledge support from the Dow Chemical Company under the earth-abundant semiconductor project. We also acknowledge the Joint Center for Artificial Photosynthesis and the Molecular Materials Research Center of the Beckman Institute at Caltech for instrument access. The authors thank Bruce Brunschwig and Kimberly Papadantonakis for guidance.

Compliance with ethical standards

Funding sources

Dow Chemical Company, Caltech Molecular Materials Research Center.

Supplementary material

339_2017_1341_MOESM1_ESM.docx (604 kb)
Supplementary material 1 (DOCX 603 KB)

References

  1. 1.
    L. Lahourcade, N. Coronel, K. Delaney, S.K. Shukla, N.A. Spaldin, H.A. Atwater, Adv. Mater. 25, 2562 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Quayle, K. He, J. Shan, K. Kash, MRS Commun. 3, 135 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field III, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Appl. Phys. Lett. 103, 042109 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    K.T. Delaney, S.K. Shukla, N.A. Spaldin, in First-Principles Theoretical Assessment of Earth-Abundant Nitrides for Photovoltaic and Optoelectronic Applications using Hybrid Density Functionals Google Scholar
  5. 5.
    A. Punya, W.R.L. Lambrecht, Phys. Rev. B 84, 165204 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Punya, T.R. Paudel, W.R.L. Lambrecht, Phys. Status Solid C 8, 2492 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Punya, W.R.L. Lambrecht, Phys. Rev. B 88, 075302 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Shing, N.C. Coronel, N.S. Lewis, H.A. Atwater, APL Mater. 3, 076104 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N.C. Coronel, L. Lahourcade, K.T. Delaney, A.M. Shing, H.A. Atwater, Proc. 38th IEEE PVSC, p. 003204 (2012)Google Scholar
  10. 10.
    T.D. Veal, N. Feldberg, N.F. Quackenbush, W.M. Linhart, D.O. Scanlon, L.F.J. Piper, S.M. Durbin, Adv. Energy Mater. 5, 1501462 (2015)CrossRefGoogle Scholar
  11. 11.
    N. Feldberg, J.D. Aldous, P.A. Stampe, R.J. Kennedy, T.D. Veal, S.M. Durbin, J. Electron. Mater. 43(4), 884 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    N. Senabulya, N. Feldberg, R.A. Makin, Y. Yang, G. Shi, C.M. Jones, E. Kioupakis, J. Mathis, R. Clarke, S.M. Durbin, AIP Adv. 6, 075019 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Kuo, K.S. Chang, Cryst. Growth Des. 17(9), 4696–4702 (2017)CrossRefGoogle Scholar
  14. 14.
    A.N. Fioretti, A. Stokes, M.R. Young, B. Groman, E.S. Toberer, A.C. Tamboli, A. Zakutayev, Adv. Electron. Mater. 3, 1600544 (2015)CrossRefGoogle Scholar
  15. 15.
    R.L. Anderson, Solid State Electron. 5, 341 (1962)ADSCrossRefGoogle Scholar
  16. 16.
    A.G. Milnes, D.L. Feucht, Heterojunctions and Metal Semiconductor Junctions (Academic Press, New York, 1972)Google Scholar
  17. 17.
    M.J. Adams, A. Nussbaum, Solid State Electron. 22, 783–791 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  19. 19.
    L. Yang, H. Zhou, T. Fan, D. Zhang, Phys. Chem. Chem. Phys. 16, 6810–6826 (2014)CrossRefGoogle Scholar
  20. 20.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)CrossRefGoogle Scholar
  21. 21.
    R. Schlaf, H. Murata, Z.H. Kafafi, J. Electron Spectrosc. Relat. Phenom. 120, 149–154 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Schulz, E. Klausmann, A. Hurrle, CRC Crit. Rev. Solid State Sci. 5(3), 319–325 (1975)CrossRefGoogle Scholar
  23. 23.
    C.T. Au, W. Hirsch, W. Hirschwald, Surf. Sci. 197(3), 391–401 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    F. Streicher, S. Sadewasser, M.C. Lux-Steiner, Rev. Sci. Instrum. 80, 013907 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    G.V. Hansson, R.I.G. Uhrberg, Surf. Sci. Rep. 9, 197–292 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    P.T. Andrews, L.A. Hisscott, J. Phys. F Met. Phys. 5, 1568–1572 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    J. Kubota, K. Domen, ECS Interface 24(2), 57–62 (2013)Google Scholar
  28. 28.
    T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Sens. Actuators B 118, 78–83 (2006)CrossRefGoogle Scholar
  29. 29.
    C.A. Dearden, M. Walker, N. Beaumont, I. Hancox, N.K. Unsworth, P. Sullivan, C.F. McConville, T.S. Jones, Phys. Chem. Chem. Phys. 16, 18926–18932 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Fuchs, H.J. Schimper, A. Klein, W. Jaegermann, Energy Proc. 10, 149–154 (2011)CrossRefGoogle Scholar
  31. 31.
    K. Burger, F. Tschismarov, H. Ebel, J. Electron Spectrosc. Relat. Phenom. 10, 461 (1977)CrossRefGoogle Scholar
  32. 32.
    Positions of photoelectron and auger lines on the binding energy scale (Al X-rays) (XPS International LLC, 2017). http://www.xpsdata.com/XI_BE_table.htm. Accessed 06 Dec 1999
  33. 33.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Line positions from Al X-rays in numerical order, in Handbook of X-ray Photoelectron Spectroscopy, 1st edn, (Perkin-Elmer Corporation Physical Electronics, 1979), p. 187 (Table 4) Google Scholar
  34. 34.
    X. Bai, W. Jie, G. Zha, W. Zhang, P. Li, H. Hua, L. Fu, Appl. Surf. Sci. 255(18), 7966 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. Conings, L. Baeten, C.D. Dobbelaere, J. D’Haen, J. Manca, H.G. Boyen, Adv. Mater. 26(13), 2041–2046 (2014)CrossRefGoogle Scholar
  36. 36.
    F. Vaz, N. Martin, M. Fenker, Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods (Bentham Science Publishers, Sharjah, 2013)Google Scholar
  37. 37.
    H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261–264 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141(1), 109–125 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    V.I. Nefedov, I.A. Zakharova, I.I. Moiseev, M.A. Porai-koshits, M.N. Vargoftik, A.P. Belov, Zh. Neorg. Khimil 18, 3264 (1973)Google Scholar
  41. 41.
    D.E. Eastman, J.K. Cashion, Phys. Rev. Lett. 24(7), 310–313 (1970)ADSCrossRefGoogle Scholar
  42. 42.
    C.M. Eggleston, J.J. Ehrhardt, W. Stumm, Am. Miner. 81, 1036–1056 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    J.L. Freeouf, D.E. Eastman, CRC Crit. Rev. Solid State Sci. 5(3), 245–258 (1975)CrossRefGoogle Scholar
  44. 44.
    K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, H. Hosono, J. Appl. Phys. 109, 073726 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    T.E. Fischer, Surf. Sci. 13(1), 30–51 (1969)ADSCrossRefGoogle Scholar
  46. 46.
    L.F. Wagner, W.E. Spicer, Phys. Rev. Lett. 28(21), 1381–1384 (1972)ADSCrossRefGoogle Scholar
  47. 47.
    J.N. Miller, I. Lindau, W.E. Spicer, Philos. Mag. B 43(2), 273–282 (1981)ADSCrossRefGoogle Scholar
  48. 48.
    D.R. Palmer, S.R. Morrison, C.E. Dauenbaugh, Phys. Rev. 129(2), 608–613 (1963)ADSCrossRefGoogle Scholar
  49. 49.
    A.J. Nozik, R. Memming, J. Phys. Chem. 100(31), 13061–13078 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Amanda M. Shing
    • 1
  • Yulia Tolstova
    • 1
  • Nathan S. Lewis
    • 2
  • Harry A. Atwater
    • 3
  1. 1.Department of Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations