Advertisement

Applied Physics A

, 123:695 | Cite as

Laser pyrolysis synthesis of Sn–Fe–N@polycarbosilazane nanocomposites, characterization and evaluation as energy storage materials

  • Claudiu Teodor Fleaca
  • Florian Dumitrache
  • Ion Sandu
  • Elena Dutu
  • Alina Ilie
  • Ana-Maria Banici
  • Eugeniu Vasile
  • Codruta Vlaic
  • Andreas Bund
  • Gabriel Prodan
Article
  • 125 Downloads

Abstract

We report the single-step synthesis of novel tin-based core–carbosilazane shell nano-composites using laser pyrolysis technique. Controlled NH3 flows were used to entrain the vapors of volatile precursors: Sn(CH3)4 (TMT) and Fe(CO)5 injected through center for the core and [Si(CH3)3]2NH (HMDS) through the annular nozzle for the shell. Both NH3 and HMDS plays also the role of absorbers of the IR laser radiation. The obtained nanoparticles shown polydispersity with sizes from 5 up to around 120 nm, having spheroidal crystalline core—disordered shell morphology as confirmed by transmission electron microscopy images, where also short amorphous nanofibers were observed. The dominant crystalline phase β-Sn (having mean crystallite size between 22 and 29 nm) and minor tin-iron intermetallic and nitride phases were identified by X-ray diffraction. Infrared spectra show the presence of Si–N and Si–C bonds, pointing to a carbosilazane composition of the shells, accompanied by Si–O bonds due to partial oxidation after air exposure. Three different samples were obtained by keeping constant the Sn and Fe precursors flows and diminishing the HDMS flow, together with the corresponding NH3 flows. Preliminary tests of these materials as anodes for Li-ion battery showed an initial discharge capacity near 800 mAg/h which decreased to 300 mAh/g after 20 cycles for the sample having the highest Sn content.

Notes

Acknowledgements

The financial support from Human Resources Program—Young Researcher Teams Subprogram PN-II-RU-TE-2014-4-2834 of the Romanian Ministry of Education and Research and from Romanian National Authority for Research and Innovation Nucleu Program 4N/2016 is greatly acknowledged. In addition, the authors are grateful to the following collaborators for their help: Dr. Cristian Mihailescu (XPS analysis), Dr. Marius Dumitru (EDS elemental evaluation) and Dr. Oana Marinica (magnetic measurements).

References

  1. 1.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Roy, S.K. Srivastava, J. Mater. Chem. A 3, 2454 (2015)CrossRefGoogle Scholar
  3. 3.
    V.A. Agubra, L. Zuniga, D. Flores, J. VIllareal, M. Alcoutlabi, Electrochim. Acta 19, 529 (2016)CrossRefGoogle Scholar
  4. 4.
    M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5, 7854 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Nitta, G. Yushin, Part. Part. Synth. Charact. 317, 331 (2014)Google Scholar
  6. 6.
    B.W.R. Chowdari, Bulk- and nanomaterials for Li ion batteries. https://www.iitk.ac.in/reach/2007/NUS/NUS_01_BVRChowdari.ppt.pdf. Accessed 10 June 2017
  7. 7.
    N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, J. Parisi, CrystEngComm 17, 8500 (2015)CrossRefGoogle Scholar
  8. 8.
    G.R. Goward, N.J. Taylor, D.C.S. Souza, L.F. Nazar, J. Alloys Cpds. 329, 82 (2001)CrossRefGoogle Scholar
  9. 9.
    C. Lupu, J.-G. Mao, J.W. Rabalais, A.M. Guloy, J.W. Richardson Jr., Inorg. Chem. 42, 3765 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Zhang, T. Wang, G. Gao, Int. Mater. Rev. 60, 330 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Tian, F. Xin, X. Wang, W. He, W. Han, J. Materiomics 1, 153 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Li, Z. Du, R.E. Ruther, S.J. An, L.A. David, K. Hays, M. Wood, N.D. Phillip, Y. Sheng, C. Mao, S. Kalnaus, C. Daniel, D.L. Wood, III, JOM (2017) doi: 10.1007/s11837-017-2404-9
  13. 13.
    C.-M. Park, KJ.-H. Kim, H. Kim, H.-J. Sohn, Chem. Soc. Rev. 39, 3115 (2010)CrossRefGoogle Scholar
  14. 14.
    A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, V. Van Schalkwijk, Nat. Mater. 4, 366 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    J. Chen, Materials 6, 156 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Patil, V. Patil, D.W. Shin, J.-W. Choi, D.-S. Paik, S.-J. Yon, Mater. Res. Bull. 43, 1913 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Su, Z. Zhou, M. Ren, Chem. Commun. 46, 2590 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Mouyane, L. Aldon, M. Womes, B. Ducourant, J.-C. Jumas, J. Olivier-Fourcade, J. Power Sources 189, 818 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.-M. Lee, H. Jung, Y. Hwa, H. Kim, D. Im, S.-G. Doo, H.-J. Sohn, J. Power Sources 195, 5044 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S.L. Weeks, N. Leick, S. Agarwal, Plasma Process. Polym. 13, 116 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Conubeer, M. Green, E.-C. Cho, D. König, Y.-H. Cho, T. Fangsuwannarak, G. Scandera, E. Pink, Y. Huang, T. Puzzer, S. Huuang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Thin Solid Films 516, 6748 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S. Huang, Y.H. So, G. Coinbeer, M.A. Green, J. Appl. Phys. 105, 124303 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    C.-S. Yang, Q. Liu, S.M. Kauzlarich, Chem. Mater. 12, 983 (2000)CrossRefGoogle Scholar
  25. 25.
    W. Kafrouni, V. Rouessac, A. Julbe, J. Durand, J. Membr. Sci. 329, 130 (2009)CrossRefGoogle Scholar
  26. 26.
    W. Kafrouni, V. Rouessac, A. Julbe, J. Durand, Appl. Surf. Sci. 257, 1196 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    E. Ferreira, P. Fortunato, A.S. Vilarinho, A.R. Viana, E. Ramos, R. Alves, Martins, J. Non Cryst. Solids 235, 1361 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    G.W. Rice, R.L. Woodin, J. Mater. Res. 4, 1538 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    N. Herlin, O. Croix, M. Cauchetier, M. Luce, E. Musset, J. Phys. IV, 314981 (1993)Google Scholar
  30. 30.
    M. Cauchetier, O. Croix, N. Herlin, M. Luce, J. Am. Ceram. Soc. 77, 993 (1994)CrossRefGoogle Scholar
  31. 31.
    M. Cauchetier, O. Croix, M. Luce, M.I. Barton, T. Merle, P. Quintard, J. Eur. Ceram. Soc. 8, 215 (1990)CrossRefGoogle Scholar
  32. 32.
    R. Alexandrescu, I. Morjan, E. Borsella, S. Botti, R. Fantoni, A.T. Dikonimos-Makris, R. Giorgi, S. Erzo, J. Mater. Res. 6, 2442 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    E. Dutu, F. Dumitrache, C.T. Fleaca, I. Morjan, L. Gavrila-Florescu, I.P. Morjan, I. Sandu, M. Scarisoreanu, C. Luculescu, A.-M. Niculescu, E. Vasile, Appl. Surf. Sci. 336, 290 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    R. Alexandrescu, I. Morjan, F. Dumitrache, R. Birjega, C. Fleaca, I.P. Morjan, M. Scarisoreanu, C. Luculescu, E. Dutu, V. Kuncser, G. Filoti, E. Vasile, V. Ciupina, Appl. Surf. Sci. 3258, 9421 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F. Le Normand, A. Derory, Appl. Surf. Sci. 255, 5386 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C. Fleaca, F. Dumitrache, E. Dutu, C. Luculescu, A.-M. Niculescu, A. Ilie, E. Vasile, U.P.B. Sci. Bull. B 78, 43 (2016)Google Scholar
  37. 37.
    C.E. Housecroft, K. Wade, B.C. Smith, J. Organomet. Chem. 179, C1 (1979)CrossRefGoogle Scholar
  38. 38.
    R.P. Johnson, J.W. Price, Can. J. Chem. 50, 50 (1972)CrossRefGoogle Scholar
  39. 39.
    J. Pola, M. Marysko, V. Vorlicek, Z. Bastl, A. Galokova, K. Vacek, R. Alexandrescu, F. Dumitrache, I. Morjan, L. Albu, G. Prodan, Appl. Organomet. Chem. 19, 1015 (2005)CrossRefGoogle Scholar
  40. 40.
    N. Inagaki, Y. Hashimoto, Polym. Bull. 12, 437 (1984)CrossRefGoogle Scholar
  41. 41.
    X. Zhang, Y. Rao, J. Guo, G. Qin, Carbon 96, 972 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. El Mendili, J.-F. Bardeau, N. Randrianantoandro, A. Gourbil, J.-M. Greneche, A.-M. Mercier, F. Grasset, J. Raman Spectrosc. 42, 239 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Dohicevic-Mitrovic, Z.V. Popovic, Solid State Phenom. 6162, 258 (1998)Google Scholar
  44. 44.
    C. Serenaud, A. Gheorghiu, G. de la Rocque, N. Dufour, Herlin, J. Appl. Phys. 84, 4945 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    K.C.H. Kumar, P. Wollants, L. Delaey, Calphad 20, 139 (1996)CrossRefGoogle Scholar
  46. 46.
    Y. Suda, K. Maruyama, T. Iida, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Crystals 5, 47 (2015)CrossRefGoogle Scholar
  47. 47.
    A.B. Kuriganova, C.A. Vlaic, S. Ivanov, D.V. Leontyeva, A. Bund, N.V. Smirnova, J. Appl. Electochem. 46, 527 (2016)Google Scholar
  48. 48.
    Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan, Y. Huang, W. Zhang, H. Zhang, J. Lu, F. Huo, Q. Yan, Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal–organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 17172–17177 (2017)Google Scholar
  49. 49.
    X. Chang, T. Wang, Z. Liu, X. Zheng, J. Zheng, X. Li, Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 10, 1950–1958 (2017)CrossRefGoogle Scholar
  50. 50.
    Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M.R. Zachariah, C. Wang, Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 13, 470–474 (2013)ADSGoogle Scholar
  51. 51.
    Y. Ye, P. Wu, X. Zhang, T. Zhou, Y. Tang, Y. Zhou, T. Lu, Facile synthesis of graphene supported FeSn2 nanocrystals with enhanced Li-storage capability. RSC Adv. 4, 17401 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Claudiu Teodor Fleaca
    • 1
  • Florian Dumitrache
    • 1
  • Ion Sandu
    • 1
  • Elena Dutu
    • 1
    • 4
  • Alina Ilie
    • 1
    • 4
  • Ana-Maria Banici
    • 1
    • 5
  • Eugeniu Vasile
    • 3
  • Codruta Vlaic
    • 2
  • Andreas Bund
    • 2
  • Gabriel Prodan
    • 6
  1. 1.National Institute for Lasers, Plasma and Radiation Physics (NILPRP)BucharestRomania
  2. 2.Institute für Werkstofftechnik, FG Electrokemie und GalvanotechnikIlmenau Technische UniversitatIlmenauGermany
  3. 3.Department of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucharestRomania
  4. 4.Faculty of PhysicsUniversity of BucharestBucharestRomania
  5. 5.Faculty of Mathematics and Natural SciencesUniversity of CraiovaCraiovaRomania
  6. 6.Faculty of Mechanical, Industrial and Marine Engineering“Ovidius” University of ConstantaConstanțaRomania

Personalised recommendations