Applied Physics A

, 123:616 | Cite as

Metal oxide hollow nanoparticles formation by a single nanosecond pulsed laser ablation in liquid

  • Tao Zhang
  • Zhen Wang
  • David J. HwangEmail author


In this study, the trend of metal oxide hollow nanoparticles formation is experimentally inspected by a single nanosecond pulsed laser ablation of a bulk metal material in water and/or ethanol. Analysis results by transmission electron microscope indicate that the hollow formation can be completed or initiated by a single nanosecond laser pulse, dictated by the diffusive thermo-chemical and/or bubble-assisted assembly mechanisms, depending on the surrounding liquid medium and laser parameters. The results not only provide experimental clues to unveiling complex mechanisms involved with the hollow formation by the multiple laser shots but also will contribute to improving the hollow particle production efficiency.



This research was supported by a Grant (code# 14CTAP-C086566-01-000000) from Technology Advancement Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government. The electron microscope analysis was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Authors appreciate Dr. T. J. Kim (Chemical Engineering Department, Stony Brook University) for discussion on compositional analysis.


  1. 1.
    D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)CrossRefGoogle Scholar
  2. 2.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Func. Mat. 22, 1333 (2012)CrossRefGoogle Scholar
  4. 4.
    X.W. Lou, L.A. Archer, Adv. Mat. 20, 1853 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Angew. Chem. 44, 5083 (2005)CrossRefGoogle Scholar
  6. 6.
    T. Gao, B.P. Jelle, L.I.C. Sandberg, A. Gustavsen, ACS Appl. Mater. Interfaces 5, 761 (2013)CrossRefGoogle Scholar
  7. 7.
    K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, X.W. Du, Langmuir 26, 16652 (2010)CrossRefGoogle Scholar
  8. 8.
    K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, JACS 132, 9814 (2010)CrossRefGoogle Scholar
  9. 9.
    G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)CrossRefGoogle Scholar
  10. 10.
    Z. Yan, R. Bao, C.M. Busta, D.B. Chrisey, Nanotechnology 22, 265610 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Jung, M.Y. Choi, J. Phys. Chem. C 118, 14647 (2014)CrossRefGoogle Scholar
  12. 12.
    D.M. Arboleda, J.M.J. Santillán, L.J.M. Herrera, M.B.F. van Raap, P.M. Zélis, D. Muraca, D.C. Schinca, L.B. Scaffardi, J. Phys. Chem. C 119, 13184 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T.D.S. Rolo, A. Plech, J. Colloid Interface Sci 489, 106 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Yan, R. Bao, Y. Huang, A.N. Caruso, S.B. Qadri, C.Z. Dinu, D.B. Chrisey, J. Phys. Chem. C 114, 3869 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Zijie, D.B. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Fan, U. Gosele, M. Zacharias, Small 3, 1660 (2007)CrossRefGoogle Scholar
  18. 18.
    Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    S. Mrowec, M. Danielewski, A. Wojtowicz, J. Mater. Sci. 33, 2617 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M. Dell’Aglio, R. Gaudiuso, O.D. Pascale, A.D. Giacomo, Appl. Surf. Sci. 348, 4 (2015)CrossRefGoogle Scholar
  21. 21.
    F.C. Nix, F.E. Jabot, Phys. Rev. 82, 72 (1951)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Yan, R. Bao, Y. Huang, D.B. Chrisey, J. Phys. Chem. C 114, 11370 (2010)CrossRefGoogle Scholar
  23. 23.
    Z. Yan, R. Bao, R.N. Wright, D.B. Chrisey, Appl. Phys. Lett. 97, 124106 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    G. Viau, V. Collière, L.-M. Lacroix, G.A. Shafeev, Chem. Phys. Lett. 501, 419 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    P.G. Kuzmin, G.A. Shafeev, G. Viau, B. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 258, 9283 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    W. Soliman, T. Nakano, N. Takada, K. Sasaki, Japanese. J. Appl. Phys. 49, 11R (2010)CrossRefGoogle Scholar
  27. 27.
    E.V. Barmina, A.V. Simakin, G.A. Shafeev, Chem. Phys. Lett. 655, 3538 (2016)Google Scholar
  28. 28.
    M.T. Lee, D.J. Hwang, R. Greif, C.P. Grigoropoulos, Int. J. Hydrog. Energy 34, 1835 (2009)CrossRefGoogle Scholar
  29. 29.
    J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004)CrossRefGoogle Scholar
  30. 30.
    I.A. Sukhov, G.A. Shafeev, V.V. Voronov, M. Sygletou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 302, 7982 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringState University of New YorkStony BrookUSA

Personalised recommendations