Applied Physics A

, 123:600 | Cite as

Continuous-wave laser-induced glass fiber generation

  • Nobuyasu Nishioka
  • Hirofumi HidaiEmail author
  • Souta Matsusaka
  • Akira Chiba
  • Noboru Morita


Pulsed-laser-induced glass fiber generation has been reported. We demonstrate a novel glass fiber generation technique by continuous-wave laser illumination and reveal the generation mechanism. In this technique, borosilicate glass, metal foil, and a heat insulator are stacked and clamped by a jig as the sample. Glass fibers are ejected from the side surface of the borosilicate glass by laser illumination of the sample from the borosilicate glass side. SEM observation shows that nanoparticles are attached on the glass fibers. High-speed imaging reveals that small bubbles are formed at the side surface of the borosilicate glass and the bursting of the bubble ejects the fibers. The temperature at the fiber ejection point is estimated to be ~1220 K. The mechanism of the fiber ejection includes the following steps: the metal thin foil heated by the laser increases the temperature of the surrounding glass by heat conduction. Since the absorption coefficient of the glass is increased by increasing the temperature, the glass starts to absorb the laser irradiation. The heated glass softens and bubbles form. When the bubble bursts, molten glass and gas inside the bubble scatter into the air to generate the glass fibers.



Support by the Japan Society for the Promotion of Science under a Grant-in-Aid for Scientific Research (B, 20360065) is gratefully acknowledged.


  1. 1.
    I. Herszberg, H.C.H. Li, F. Dharmawan, A.P. Mouritz, M. Nguyen, J. Bayandor, Compos. Struct. 67, 205 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Paz, J. Díaz, L. Romera, M. Costas, Compos. Struct. 133, 499 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Hamid, M.R. Ehsani, J. Struct. Eng. 117, 3417 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Kupke, H.P. Wentzel, K. Schulte, Mat. Res. Innov. 2, 164 (1998)CrossRefGoogle Scholar
  5. 5.
    Y. Takahashi, T. Mohri, Earozoru Kenkyu 6, 4 (1991) (in Japanase) Google Scholar
  6. 6.
    B. Tan, K. Venkatakrishnan, Opt. Express 17, 1064 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    V.N. Tokarev, S. Lazare, C. Belin, D. Debarre, Appl. Phys. A 79, 717 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Itoh, M. Sakakura, Y. Shimotsuma, K. Miura, Appl. Phys. B 119, 519 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Sivakumar, K. Venkatakrishnan, B. Tan, Nanoscale Res. Lett. 4, 1263 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    K. Venkatakrishnan, D. Vipparty, B. Tan, Opt. Express 19, 15770 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    G.A.J. Markillie, H.J. Baker, F.J. Villarreal, D.R. Hall, Appl. Opt. 41, 5660 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Yamane, I. Yasui, M. Wada, Y. Kokubu, R. Terai, K. Kondo, S. Ogawa, Handbook of glass engineering, 1st edn. (Asakura Publishing Co., Ltd, Japan, 1999), pp. 356–377 (in Japanase) Google Scholar
  13. 13.
    H. Hidai, M. Yoshioka, K. Hiromastu, H. Tokura, Appl. Phys. A 94, 869 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hidai, N. Saito, S. Matsusaka, A. Chiba, N. Morita, Appl. Phys. A 122, 4 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Itoh, H. Hidai, H. Tokura, Appl. Phys. A 112, 4 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Hidai, M. Yoshioka, K. Hiromatsu, H. Tokura, J. Am. Ceram. Soc. 93, 6 (2010)Google Scholar
  17. 17.
    A. Goldsmith, T.E. Waterman, J.J. Hirschhorn, Handbook of thermophysical properties of solid materials, vol. 3 (Pergamon Press, New York, 1961), p. 871Google Scholar
  18. 18.
    D. Bäuerle, Laser processing and chemistry, 4th edn. (Springer, New York, 2011), p. 21CrossRefGoogle Scholar
  19. 19.
    S. Todoroki, Fiber fuse: light-induced continuous breakdown of silica glass optical fiber (Springer Japan, Tokyo, 2014), pp. 51–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChiba UniversityChibaJapan

Personalised recommendations