Applied Physics A

, 123:596 | Cite as

Selective laser melting of copper using ultrashort laser pulses

  • Lisa KadenEmail author
  • Gabor Matthäus
  • Tobias Ullsperger
  • Hannes Engelhardt
  • Markus Rettenmayr
  • Andreas Tünnermann
  • Stefan Nolte
Rapid communication


Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 \({\upmu }\)m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.



This work was supported from the German Aerospace Center (DLR) within the project ultraLEICHT under Grant Number 50EE1408 and the German Federal Ministry of Education and Research (BMBF) within the project AM-OPTICS (02P15B203). Lisa Kaden was supported by TRUMPF Laser GmbH. The authors would like to thank Detlef Schelle for performing focus ion beam analysis.


  1. 1.
    J. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, J. Mater. Process. Technol. 149(1–3), 616 (2004)CrossRefGoogle Scholar
  2. 2.
    E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Int. J. Mach. Tools Manuf. 46(12–13), 1459 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Nie, H. Huang, S. Bai, J. Liu, Appl. Phys. A 118(1), 37 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S. Pogson, P. Fox, C. Sutcliffe, W. O'Neill, Rapid Prototyp. J. 9(5), 334 (2003)CrossRefGoogle Scholar
  5. 5.
    B. Nie, L. Yang, H. Huang, S. Bai, P. Wan, J. Liu, Appl. Phys. A 119(3), 1075 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, S. Nolte, Opt. Express 21(13), 15452 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13(12), 4708 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    T. Ullsperger, G. Matthäus, L. Kaden, M. Rettenmayr, S. Risse, A. Tünnermann, S. Nolte, in SPIE Photonics West 2017: Laser 3D Manufacturing IV (2017), 10095-41Google Scholar
  9. 9.
    K. Yoshida, H. Morigami, Microelectron. Reliab. 44(2), 303 (2004)CrossRefGoogle Scholar
  10. 10.
    G.G. Gu, Y.F. Shen, Powder Metall. 49(3), 258 (2006)CrossRefGoogle Scholar
  11. 11.
    H.H. Zhu, L. Lu, J.Y.H. Fuh, Journal of Materials Processing Technology 140(1–3), 314 (2003). Proceedings of the 6th Asia Pacific Conference on materials ProcessingGoogle Scholar
  12. 12.
    C. Jauregui, J. Limpert, A. Tünnermann, Nature Photonics 7(11), 861 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Otto Schott Institute of Materials ResearchFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations