Applied Physics A

, 123:576 | Cite as

Strain control of Urbach energy in Cr-doped PrFeO3

  • Anil Kumar
  • M. Kamal Warshi
  • Vikash Mishra
  • Shailendra K. Saxena
  • Rajesh Kumar
  • Pankaj R. SagdeoEmail author


Polycrystalline samples of PrFe1−x CrxO3 having average particle size of ~90 nm have been prepared by wet chemical route. The structural phase purity of the prepared samples is confirmed by powder X-ray diffraction followed by Rietveld refinements. It is observed that with Cr doping, the Urbach energy (E u) increases. The E u is measure of the various disorders present in the sample, such as chemical and structural. To understand the contribution to the E u due to chemical and structural disorders, we have probed the chemical and structural disorders in the samples by elemental mappings and through X-ray diffraction experiments, respectively. Elemental mapping confirms chemical homogeneity of prepared samples. It is observed that with Cr doping the crystallographic strain increases and Urbach energy shows the similar scaling.



All authors sincerely thank SIC IIT Indore for providing characterization facilities. CSIR, New Delhi is acknowledged for funding high temperature furnace under the project 03(1274)/13/EMR-II used for the sample preparations. The authors VM and KW acknowledge the Ministry of Human Resource Development (MHRD), government of India for providing financial support as Teaching Assistantship. Dr. Archna Sagdeo, scientific officer, RRCAT Indore is acknowledged for extending the X-ray diffraction facilities.


  1. 1.
    W. Chen, M. Mizumaki, H. Seki, M.S. Senn, T. Saito, D. Kan, J.P. Attfield, Y. Shimakawa, A half-metallic A- and B-site-ordered quadruple perovskite oxide CaCu3Fe2Re2O12 with large magnetization and a high transition temperature. Nat. Commun. 5, 3909 (2014). doi: 10.1038/ncomms4909 Google Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). doi: 10.1126/science.1065389 ADSCrossRefGoogle Scholar
  3. 3.
    M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel, Raman spectroscopy of rare-earth orthoferrites $R{\mathrm{FeO}}_{3}$ ($R$ = La, Sm, Eu, Gd, Tb, Dy). Phys. Rev. B 94(21), 214103 (2016). doi: 10.1103/PhysRevB.94.214103 ADSCrossRefGoogle Scholar
  4. 4.
    Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014). doi: 10.1016/j.jallcom.2013.08.129 CrossRefGoogle Scholar
  5. 5.
    B.V. Prasad, G.N. Rao, J.W. Chen, D.S. Babu, Colossal dielectric constant in PrFeO3 semiconductor ceramics. Solid State Sci. 14(2), 225–228 (2012). doi: 10.1016/j.solidstatesciences.2011.11.016 ADSCrossRefGoogle Scholar
  6. 6.
    A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, T. Rasing, Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435(7042), 655–657 (2005). doi: 10.1038/nature03564 ADSCrossRefGoogle Scholar
  7. 7.
    R. Iida, T. Satoh, T. Shimura, K. Kuroda, B.A. Ivanov, Y. Tokunaga, Y. Tokura, Spectral dependence of photoinduced spin precession in DyFeO${}_{3}$. Phys. Rev. B 84(6), 064402 (2011). doi: 10.1103/PhysRevB.84.064402 ADSCrossRefGoogle Scholar
  8. 8.
    L.T. Tsymbal et al., Magnetic and structural properties of spin-reorientation transitions in orthoferrites. J. Appl. Phys. 101(12), 123919 (2007). doi: 10.1063/1.2749404 ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Millis, Lattice effects in magnetoresistive manganese perovskites. Nature 392(6672), 147–150 (1998). doi: 10.1038/32348 ADSCrossRefGoogle Scholar
  10. 10.
    K. Sultan, M. Ikram, K. Asokan, Structural, optical and dielectric study of Mn doped PrFeO3 ceramics. Vacuum 99, 251–258 (2014). doi: 10.1016/j.vacuum.2013.06.014 ADSCrossRefGoogle Scholar
  11. 11.
    J.N. Kuhn, U.S. Ozkan, Surface properties of Sr- and Co-doped LaFeO3. J. Catal. 253(1), 200–211 (2008). doi: 10.1016/j.jcat.2007.10.005 CrossRefGoogle Scholar
  12. 12.
    I. Bhat, S. Husain, W. Khan, S.I. Patil, Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process. Mater. Res. Bull. 48(11), 4506–4512 (2013). doi: 10.1016/j.materresbull.2013.07.028 CrossRefGoogle Scholar
  13. 13.
    M. Idrees, M. Nadeem, M. Shah, T.J. Shin, Anomalous octahedral distortions in LaFe1−xNixO3. J. Phys. Appl. Phys. 44(45), 455303 (2011). doi: 10.1088/0022-3727/44/45/455303 ADSCrossRefGoogle Scholar
  14. 14.
    M. Kumar, N. Umezawa, S. Ishii, T. Nagao, Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photon. 3(1), 43–50 (2016). doi: 10.1021/acsphotonics.5b00409 CrossRefGoogle Scholar
  15. 15.
    M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, Band structure and optical transitions in LaFeO3: theory and experiment. J. Phys. Condens. Matter 26(50), 505502 (2014). doi: 10.1088/0953-8984/26/50/505502 CrossRefGoogle Scholar
  16. 16.
    B.M. Weckhuysen, R.A. Schoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today 49(4), 441–451 (1999). doi: 10.1016/S0920-5861(98)00458-1 CrossRefGoogle Scholar
  17. 17.
    P. Singh, I. Choudhuri, H.M. Rai, V. Mishra, R. Kumar, B. Pathak, A. Sagdeo, P.R. Sagdeo, Fe doped LaGaO3: good white light emitters. RSC Adv. 6(102), 100230–100238 (2016). doi: 10.1039/C6RA21693E CrossRefGoogle Scholar
  18. 18.
    G. Kortüm, Reflectance spectroscopy: principles, methods, applications (Springer Science & Business Media, New York, 2012)Google Scholar
  19. 19.
    S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Theory of electron band tails and the Urbach optical-absorption edge. Phys. Rev. Lett. 57(14), 1777–1780 (1986). doi: 10.1103/PhysRevLett.57.1777 ADSCrossRefGoogle Scholar
  20. 20.
    I. Bonalde, E. Medina, M. Rodríguez, S.M. Wasim, G. Marín, C. Rincón, A. Rincón, C. Torres, Urbach tail, disorder, and localized modes in ternary semiconductors. Phys. Rev. B 69(19), 195201 (2004). doi: 10.1103/PhysRevB.69.195201 ADSCrossRefGoogle Scholar
  21. 21.
    V. Sa-Yakanit, H. Glyde, Urbach tails and disorder. Comments Matter Phys. 13(1), 35–48 (1987)Google Scholar
  22. 22.
    M. Kranjčec, I.P. Studenyak, G.S. Kovacs, I.D. Desnica Franković, V.V. Panko, P.P. Guranich, V.Y. Slivka, Electric conductivity and optical absorption edge of Cu6P(SexS1−x)5I fast-ion conductors in the selenium-rich region. J. Phys. Chem. Solids 62(4), 665–672 (2001). doi: 10.1016/S0022-3697(00)00187-6 ADSCrossRefGoogle Scholar
  23. 23.
    A. Skumanich, A. Frova, N.M. Amer, Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys. Solid State Commun. 54(7), 597–601 (1985). doi: 10.1016/0038-1098(85)90086-9 ADSCrossRefGoogle Scholar
  24. 24.
    Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson, Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2. J. Appl. Phys. 78(3), 1958–1963 (1995). doi: 10.1063/1.360167 ADSCrossRefGoogle Scholar
  25. 25.
    S.D. Singh, V. Nandanwar, H. Srivastava, A.K. Yadav, A. Bhakar, P.R. Sagdeo, A.K. Sinha, T. Ganguli, Determination of the optical gap bowing parameter for ternary Ni1−xZnxO cubic rocksalt solid solutions. Dalton Trans. 44(33), 14793–14798 (2015). doi: 10.1039/C5DT02283E CrossRefGoogle Scholar
  26. 26.
    J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192(1), 55–69 (1993). doi: 10.1016/0921-4526(93)90108-I ADSCrossRefGoogle Scholar
  27. 27.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). doi: 10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  28. 28.
    M.W. Khan, S. Husain, M.A.M. Khan, M. Gupta, R. Kumar, J.P. Srivastava, Small polaron hopping conduction mechanism in Ni-doped LaFeO3. Philos. Mag. 90(22), 3069–3079 (2010). doi: 10.1080/14786431003781604 ADSCrossRefGoogle Scholar
  29. 29.
    S.H. Yoon, S.J. Park, D.J. Cha, B.K. Min, C.S. Kim, Effects of Ga substitution in LaFe1−XGaXO3. J. Magn. 7(2), 40–44 (2002). doi: 10.4283/JMAG.2002.7.2.040 CrossRefGoogle Scholar
  30. 30.
    S. Sorieul, J.-M. Costantini, L. Gosmain, G. Calas, J.-J. Grob, L. Thomé, Study of damage in ion-irradiated α-SiC by optical spectroscopy. J. Phys. Condens. Matter 18(37), 8493 (2006). doi: 10.1088/0953-8984/18/37/008 ADSCrossRefGoogle Scholar
  31. 31.
    P. Fedeli, F. Gazza, D. Calestani, P. Ferro, T. Besagni, A. Zappettini, R. Mosca, Influence of the synthetic procedures on the structural and optical properties of mixed-halide (Br, I) perovskite films. J. Phys. Chem. C 119(37), 21304 (2015). doi: 10.1021/acs.jpcc.5b03923 CrossRefGoogle Scholar
  32. 32.
    J. Huso, H. Che, D. Thapa, A. Canul, M.D. McCluskey, L. Bergman, Phonon dynamics and Urbach energy studies of MgZnO alloys. J. Appl. Phys. 117(12), 125702 (2015). doi: 10.1063/1.4916096 ADSCrossRefGoogle Scholar
  33. 33.
    M. Baldini, D. Di Castro, M. Cestelli-Guidi, J. Garcia, P. Postorino, Phase-separated states in high-pressure LaMn1−xGaxO3 manganites. Phys. Rev. B 80(4), 045123 (2009). doi: 10.1103/PhysRevB.80.045123 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anil Kumar
    • 1
  • M. Kamal Warshi
    • 1
  • Vikash Mishra
    • 1
  • Shailendra K. Saxena
    • 1
  • Rajesh Kumar
    • 1
  • Pankaj R. Sagdeo
    • 1
    Email author
  1. 1.Material Research Laboratory, Discipline of Physics and MEMSIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations