Applied Physics A

, 123:557 | Cite as

Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles

  • Tran Thi Thu Huong
  • Kazuhiko Matsumoto
  • Masataka Moriya
  • Hiroshi Shimada
  • Yasuo Kimura
  • Ayumi Hirano-Iwata
  • Yoshinao Mizugaki
Article

Abstract

We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current–voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.

References

  1. 1.
    Z. A. K. Durrani, Single-Electron Devices and Circuits in Silicon, Chap. 1 (Imperial College Press, London, 2010)Google Scholar
  2. 2.
    K.K. Likharev, Proc. IEEE, 606 (1999). doi:10.1109/5.752518
  3. 3.
    S.  Mahapatra, V. Pott, S. Ecoffey, A. Schmid, C. Wasshuber, J.W. Tringe, Y. Leblebici, M. Declercq, K. Banerjee, A. M. Ionescu, Proc. IEDM 703 (2003)Google Scholar
  4. 4.
    A.M. Ionescu, S. Mahapatra, V. Pott, IEEE Electron Device Lett. 25, 411 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    N.Z. Haron, S. Hamdioui, Proc. IDT (2008). doi:10.1109/IDT.2008.4802475 Google Scholar
  6. 6.
    K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure, K. Seki, Proc. IEEE 633 (1999)Google Scholar
  7. 7.
    A.M. Ionescu, M.J. Declercq, S. Mahapatra, K. Banerjee, J. Gautier, Proc. DAC 88 (2002). doi:10.1109/DAC.2002.1012600
  8. 8.
    T. Skotnicki, J.A. Hutchby, T.-J. King, H.-S.P. Wong, F. Boeuf, IEEE Circuits Device Mag. 21, 16 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Mahapatra, A. M. Ionescu, K. Banerjee, M.J. Declercq, Proc. IEDM 323 (2002). doi:10.1109/IEDM.2002.1175844
  10. 10.
    S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee, A.M. Ionescu, I.E.E.E. Trans. Electron Devices 51, 1772 (2004)Google Scholar
  11. 11.
    N.K. Naware, P. Wania, IJETT 2, 273 (2015)Google Scholar
  12. 12.
    H. Ahmed, J. Vac. Sci. Technol. B 15, 2101 (1997)CrossRefGoogle Scholar
  13. 13.
    Z.A.K. Durrani, A.C. Irvine, H. Ahmed, I.E.E.E. Trans. Electron Devices 47, 2334 (2000)Google Scholar
  14. 14.
    K. Uchida, J. Koga, R. Ohba, A. Toriumi, I.E.E.E. Trans. Electron Devices 50, 1623 (2003)Google Scholar
  15. 15.
    H. Inokawa, A. Fujiwara, Y. Takahashi, Proc. IEDM 7.2.1 (2001). doi: 10.1109/IEDM.2001.979453
  16. 16.
    V.I. Conrad, A.D. Greentree, L.C.L. Hollenberg, Appl. Phys. Lett. 90, 043109 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    K.K. Likharev, IEEE Trans. Magn. MAG-23, 1142 (1987)Google Scholar
  18. 18.
    F. Wakaya, K. Kitamura, S. Iwabuchi, K. Gamo, Jpn. J. Appl. Phys. 38, 2470 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B.J. Vartanian, J.S. Harris, Appl. Phys. Lett. 68, 34 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Nakamura, C. Chen, J.-S. Tsai, Jpn. J. Appl. Phys. 35, L1465 (1996)CrossRefGoogle Scholar
  21. 21.
    S. Altmeyer, A. Hamidi, B. Spangenberg, H. Kurz, J. Appl. Phys. 81, 8118 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 699 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    J.-I. Shirakashi, K. Matsumoto, N. Miura, M. Konagai, Appl. Phys. Lett. 72, 1893 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    HWCh. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 293, 76 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    J.-H. Lee, J. Cheon, S.B. Lee, Y.-W. Chang, S.-I. Kim, K.-H. Yoo, J. Appl. Phys. 98, 084315 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Azuma, Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, Y. Majima, Jpn. J. Appl. Phys. 49, 090206 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Majima, ACS Nano 6, 2798 (2012)CrossRefGoogle Scholar
  28. 28.
    A.N. Korotkov, Appl. Phys. Lett. 72, 3226 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    N. Yoshikawa, Y. Jinguu, H. Ishibashi, M. Sugahara, Jpn. J. Appl. Phys. 35, 1140 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    P. Delsing, T. Claeson, G.S. Kazacha, L.S. Kuzmin, K.K. Likharev, IEEE. Trans. Magn. 27, 2581 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    YuA Pashkin, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 74, 132 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    YuA Pashkin, Y. Nakamura, J.S. Tsai, Jpn. J. Appl. Phys. 38, 2466 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    C. Wasshuber, Computational Single-Electronics (Springer-Verlag Wien, New York, 2001), pp. 1–146Google Scholar
  34. 34.
    V.B. Engelkes, J.M. Beebe, C.D. Frisbie, J. Am. Chem. Soc. 126, 14287 (2004)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, Y. Yasutake, Y. Shichibu, T. Teranishi, Y. Majima, Phys. Rev. B 72, 205441–1 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    A.Z.-Khosousi, A.-A. Dhirani, Chem. Rev. 108, 4072 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tran Thi Thu Huong
    • 1
  • Kazuhiko Matsumoto
    • 1
  • Masataka Moriya
    • 1
  • Hiroshi Shimada
    • 1
  • Yasuo Kimura
    • 2
  • Ayumi Hirano-Iwata
    • 3
  • Yoshinao Mizugaki
    • 1
  1. 1.The University of Electro-CommunicationsTokyoJapan
  2. 2.Tokyo University of TechnologyTokyoJapan
  3. 3.Tohoku UniversitySendaiJapan

Personalised recommendations