Applied Physics A

, 123:560 | Cite as

On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes

  • Ç. Bilkan
  • Y. Badali
  • S. Fotouhi-Shablou
  • Y. Azizian-Kalandaragh
  • Ş. Altındal


In this paper, we report the preparation and characterization of SnO2–PVA nanocomposite film as interlayer for Schottky barrier diodes (SBDs). The possible current transport mechanisms (CTMs) of the prepared SBDs were investigated using the forward-bias current–voltage (IV) characteristics in the temperature range of 80–400 K. The structure of nanocomposite film was characterized by an X-ray diffractometer (XRD) and the surface morphology was investigated using a Scanning Electron Microscopy (SEM) at room temperature. The values of ideality factor (n) and zero-bias barrier height (\(\overline{\varPhi }_{\text{Bo}}\)) showed variation with temperature, such that they changed from 19.10 to 3.77 and 0.190 to 0.844 eV, respectively. \(\overline{\varPhi }_{\text{Bo}}\)n, \(\overline{\varPhi }_{\text{Bo}}\)q/2kT, and n −1q/2kT plots were drawn to get evidence to the Gaussian Distribution (GD) of the barrier height (BH). These plots revealed two distinct linear regions with different slopes for low temperatures (80–160 K) (LTs) and high temperatures (180–400 K) (HTs). This behavior is an evidence to the existence double GD of BHs which provides an average value for BH (\(\overline{\varPhi }_{\text{Bo}}\)) and a standard deviation (σs) for each region. The high value of n especially at low temperatures was attributed to the existence of interlayer: interface states (N ss) and barrier inhomogeneity at Au/n-Si interface. The values of \(\overline{\varPhi }_{\text{Bo}}\) and σs were obtained from the intercept and slope of mentioned plots as 0.588 and 0.0768 V for LTs and 1.183 eV and 0.158 V for HTs, respectively. Moreover, the modified ln(I s/T 2)−q 2σ s 2 /2k 2 T 2 vs q/kT plot also showed two linear regions. The values of \(\overline{\varPhi }_{\text{Bo}}\) and effective Richardson constant (A *) were extracted from the slope and intercept of this plot as 0.610 eV and 93.13 A/cm2 K2 for LTs and 1.235 eV and 114.65 A/cm2 K2 for HTs, respectively. The value of A* for HTs is very close to the theoretical value (112 A/cm2 K2) of n-type Si. Thus, the forward-bias IVT characteristics of Au/SnO2–PVA/n-Si (SBDs) were successfully explained in terms of the thermionic-emission (TE) mechanism with a double GD of BHs.


  1. 1.
    S.M. Sze, Physics of semiconductor devices, 2nd edn. (Willey, New York, 1981)Google Scholar
  2. 2.
    E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts (Clarendon, Oxford, 1988)Google Scholar
  3. 3.
    V.R. Reddy, M.S. Pratap Reddy, B.P. Lakshmi, A. Ashok Kumar, Electrical characterization of Au/n-GaN metal-semiconductor and Au/SiO2/n-GaN metal–insulator-semiconductor structures. J. Alloy Compd. 509, 8001 (2011)CrossRefGoogle Scholar
  4. 4.
    V.R. Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution- processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yıldırım, M. Gökçen, Controlling the electrical characteristics of Au/n-Si structures by interfacial insulator layer. Mat. Sci. Semicond. Proc. 15, 406 (2012)CrossRefGoogle Scholar
  6. 6.
    Ş. Altındal, F. Parlaktürk, A. Tataroğlu, M. Parlak, S.N. Sarmasov, A.A. Agasiev, The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Vacuum 82, 1246 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Panomsuwan, O. Takai, N. Saito, Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications. Appl. Phys. A 108, 337 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)- type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE T Electron. Dev 63, 2948 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J Mater. Sci. Mater. El 27, 8340–8347 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Altındal Yerişkin, M. Balbaşı, S. Demirezen, Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J. Phys. 91, 421–430 (2017)CrossRefGoogle Scholar
  12. 12.
    Ç. Bilkan, Y. Azizian-Kalandaragh, Ş. Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. 133, 43827 (2016)Google Scholar
  14. 14.
    E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Xu, Z.H. Chen, J.A. Zapien, C.S. Lee, W.J. Zhang, Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv. Mater. 26, 5337 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Tian, G. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)CrossRefGoogle Scholar
  19. 19.
    H.J. Snaith, C. Ducati, SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 10, 1259–1265 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm 13, 3506–3510 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, J. Guo, H. Xu, B. Cao, Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gassensing performance. ACS Appl. Mater. Interface 5, 7893–7898 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for li-ion batteries. Nano Lett. 9, 612–616 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl. Surf. Sci. 257, 9498–9502 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Eckle, G. Decher, Tuning the performance of layer-by-layer assembled organic light emitting diodes by controlling the position of isolating clay barrier sheets. Nano Lett. 1, 45–49 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys. B 515, 28–33 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, E. Alizadeh-Gheshlaghi, A. Khodayari, Characterization of some electrical properties of CdS-Gelatin nanocomposites using hall measurement technique. J Nanoelectron. Optoelectron. 12, 231–235 (2017)CrossRefGoogle Scholar
  27. 27.
    R.F. Schmitsdrof, T.U. Kampen, W. Mönch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol. B 15, 1221 (1997)CrossRefGoogle Scholar
  28. 28.
    R.T. Tung, Recent advances in Schottky barrier concepts. Mat. Sci. Eng. R 35, 1 (2001)CrossRefGoogle Scholar
  29. 29.
    Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid State Electron. 29, 633 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    M.K. Hudait, S.B. Krupanidhi, Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates. Mat. Sci. Eng. B. 87, 141 (2001)CrossRefGoogle Scholar
  32. 32.
    A. Kaya, S. Demirezen, H. Tecimer, Ş. Altındal, Temperature and voltage effect on barrier height and ideality factor in Au/PVC + TCNQ/p-Si structures. Adv. Polym. Technol. 33, 21442 (2014)CrossRefGoogle Scholar
  33. 33.
    J.P. Sulvian, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    L. Huang, Barrier inhomogeneities of platinum contacts to 4H-SiC. Superlattice Microstruct. 100, 648–655 (2016)CrossRefGoogle Scholar
  35. 35.
    W. Mönch, On the band-structure lineup at Schottky contacts and semiconductor heterostructures. Mat. Sci. Semicond. Proc. 28, 2–12 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Singh, P. Sharma, M.A. Khan, V. Garg, V. Awasthi, A. Kranti, S. Mukherjee, Investigation of barrier inhomogeneities and interface state density in Au/MgZnO: Ga Schottky contact. J. Phys. D Appl. Phys. 49, 445303 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Khurelbaatar, M.-S. Kang, K.-H. Shim, H.-J. Yun, J. Lee, H. Hong, S.-Y. Chang, S.-N. Lee, C.-J. Choi, Temperature dependent current-voltage characteristics of Au/n-type Ge Schottky barrier diodes with graphene interlayer. J. Alloys Compd. 650, 658–663 (2015)CrossRefGoogle Scholar
  38. 38.
    A. Chatterjee, S.K. Khamari, V.K. Dixit, S.M. Oak, T.K. Sharma, Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN. J. Appl. Phys. 118, 175703 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    I. Jyothi, V. Janardhanam, H. Hong, C.-J. Choi, Current-voltage and capacitance-voltage characteristics of Al Schottky contacts to strained Si-on-insulator in the wide temperature range. Mat. Sci. Semicond. Proc. 39, 390–399 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş. Altındal, Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. J Mat Sci. Mat. Electron. 28, 3987–3996 (2017)CrossRefGoogle Scholar
  41. 41.
    B.L. Sharma, Metal-semiconductor Schottky Barrier junctions and their applications (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  42. 42.
    M.A. Laurent, G. Gupta, D.J. Suntrup, S.P. DenBaars, Barrier height inhomogeneity and its impact on (Al, In, Ga) N Schottky diodes. J. Appl. Phys. 119, 064501 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Mayimele, J.P.J. Rensburg, F.D. Auret, M. Diale, Analysis of temperature-dependent current-voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes. Phys. B 480, 58–62 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    H. Tecimer, A. Türüt, H. Uslu, S. Altındal, I. Uslu, Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuat. A Phys. 199, 194–201 (2013)CrossRefGoogle Scholar
  45. 45.
    F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    A.N. Saxena, Forward current-voltage characteristics of Schottky barriers on n-type silicon. Surf. Sci. 13, 151–171 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ç. Bilkan
    • 1
  • Y. Badali
    • 2
  • S. Fotouhi-Shablou
    • 3
  • Y. Azizian-Kalandaragh
    • 3
    • 4
  • Ş. Altındal
    • 5
  1. 1.Department of Physics, Faculty of SciencesÇankırı Karatekin UniversityÇankırıTurkey
  2. 2.Department of Advanced Technologies, Institute of Science and TechnologyGazi ÜniversityAnkaraTurkey
  3. 3.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran
  4. 4.Department of Engineering SciencesSabalan University of Advanced TechnologiesNaminIran
  5. 5.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey

Personalised recommendations