Applied Physics A

, 123:495 | Cite as

UV laser direct writing of 2D/3D structures using photo-curable polydimethylsiloxane (PDMS)

  • Kotaro Obata
  • Shayna Slobin
  • Adam Schonewille
  • Arndt Hohnholz
  • Claudia Unger
  • Jürgen Koch
  • Oliver Suttmann
  • Ludger Overmeyer
Rapid communication

Abstract

Additive manufacturing with UV curable polydimethylsiloxane (PDMS) was achieved using UV laser direct writing. In these experiments, UV curable PDMS was locally polymerized to fabricate 1D and 2D single layer structures, as well as 3D multilayer structures. Line arrays with line widths between 18 and 47 µm were produced, and it was observed that good stability and repeatability of the photo-polymerization in the UV curable PDMS was possible. The 3D structures demonstrated the absorption depth of the UV curable PDMS, which was deeper than 3 mm, and enabled the fabrication of 3.1 mm tall structures with an aspect ratio of 2 in only a single layer. The 3D structures were sufficiently strong to show elastic properties. All surfaces were smooth and transparent. In addition, UV laser direct writing of UV curable PDMS realized patterning with uniform resolutions at each layer.

Notes

Acknowledgements

Authors would like to thank Shin-Etsu Silicones Europe B.V. for providing the PDMS sample and Katie Xu for supporting the technical discussion. This research was supported in a part of joint research projects by “Projektbezogener Personenaustausch mit Japan” (DAAD-JSPS) Joint Research Program (Project 57245147). The authors acknowledge financial support in the frame of the 3D-PolySPRINT Project (BMBF FKZ 13N13567).

References

  1. 1.
    M. Takai, T. Shirai, K. Ishihara, J. Photopolym. Sci. Technol. 24, 597 (2011)CrossRefGoogle Scholar
  2. 2.
    N. Ishikawa, Y. Hanada, I. Ishikawa, K. Sugioka, K. Midorikawa, Appl. Phys. B 119, 503 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    B. Lin, Y. Yang, C. Ho, H. Yang, H. Wang, Sensors 14, 2967 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Lu, Y. Zhang, D. Han, H. Wang, H. Xia, Q. Chen, J. Mater. Chem. C 3, 1751 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Ward, Y. Yang, S. Chormaic, Proc. SPIE 9343, 934314 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Lin, J. Chou, J. Adhes. Sci. Technol. 30, 1310 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Nargang, L. Brockmann, P. Nikolov, D. Schild, D. Helmer, N. Keller, Lab Chip 14, 2698 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Duffy, J. McDonald, O. Schueller, G. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Park, B. Vahidi, A. Taylor, S. Rhee, N. Jeon, Nat. Protoc. 1, 2128 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Lee, M. Goedert, M. Matyska, E. Ghandehari, M. Vijay, J. Pesek, J. Micromech. Microeng. 18, 025026 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kant, S. Shinde, D. Bodas, K. Patil, V. Sathe, K. Adhi, S. Gosavi, Appl. Surf. Sci. 314, 292 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. Waheed, J. Cabot, N. Macdonald, T. Lewis, R. Guijt, B. Paull, M. Breadmore, Lab Chip 16, 1993 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Coenjarts, C. Ober, Chem. Mater. 16, 5556 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Hasegawa, K. Oishi, S. Maruo, in Proceedings of IEEE conference on micro-nanomechatronics and human science, 158 (2006)Google Scholar
  15. 15.
    H. Selvaraj, B. Tan, K. Venkatakrishnan, J. Micromech. Microeng. 21, 075018 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S. Rekštytė, M. Malinauskas, S. Juodkazis, Opt. Express 21, 17028 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    C. Sones, I. Katis, B. Mills, M. Feinaeugle, A. Mosayyebi, J. Butement, R. Eason, Appl. Surf. Sci. 298, 125 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, R. Mačiulaitis, Biofabrication 23, 015015 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tsougeni, A. Tserepi, E. Gogolides, Microelectron. Eng. 84, 1104 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Goswami, A. Skov, A. Daugaard, Chem. Eur. J. 20, 9230 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Chidambaram, R. Kirchner, M. Altana, H. Schift, J. Vac. Sci. Technol. B 34, 06K401 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kotaro Obata
    • 1
  • Shayna Slobin
    • 1
  • Adam Schonewille
    • 1
  • Arndt Hohnholz
    • 1
  • Claudia Unger
    • 1
  • Jürgen Koch
    • 1
  • Oliver Suttmann
    • 1
  • Ludger Overmeyer
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations