Applied Physics A

, 123:425 | Cite as

Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

  • Yasushi Hamanaka
  • Masahiro Iwata
  • Junichi Katsuno
Article
  • 94 Downloads

Abstract

Spherical Ge nanoparticles with diameters of 20–80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

Keywords

Laser Ablation GeO2 Colloidal Suspension Pulse Laser Ablation Repulsion Potential 

Notes

Acknowledgements

The authors would like to thank Dr. Satoshi Fujita, Aisin Seiki Co. Ltd., and IMRA America, Inc. for allowing the use of the femtosecond laser and helpful technical support.

Compliance with ethical standards

Funding

This study received no funding.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Baricikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022 (2013)CrossRefGoogle Scholar
  2. 2.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)CrossRefGoogle Scholar
  3. 3.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)CrossRefGoogle Scholar
  4. 4.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)CrossRefGoogle Scholar
  5. 5.
    A.A. Ruth, J.A. Young, Colloids Surf. A Physicochem. Eng. Asp. 279, 121 (2006)CrossRefGoogle Scholar
  6. 6.
    H.S. Nalwa, Nanostructured materials and nanotechnology, Concise edn. (Academic Press, San Diego, 2002)Google Scholar
  7. 7.
    K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 366, 357 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Appl. Phys. B 80, 595 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, Appl. Phys. A 94, 641 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem. Int. Ed. 49, 6361 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Jiang, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Appl. Phys. A 105, 903 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, Opt. Mater. Exp. 2, 510 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Maeda, Phys. Rev. B 51, 1658 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sato, T. Ikeda, K. Hamada, K. Kimura, Solid State Commun. 149, 862 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    D.C. Lee, J.M. Pietryga, I. Robel, D.J. Werder, R.D. Schaller, V.I. Klimov, J. Am. Chem. Soc. 131, 3436 (2009)CrossRefGoogle Scholar
  16. 16.
    D.A. Ruddy, J.C. Johnson, E.R. Smith, N.R. Neale, ACS Nano 4, 7459 (2010)CrossRefGoogle Scholar
  17. 17.
    Z.C. Holman, U. Kortshagen, Phys. Status Solidi RRL 5, 110 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Okamoto, Y. Kanemitsu, Phys. Rev. B 54, 16421 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    M. Zacharias, P.M. Fauchet, Appl. Phys. Lett. 71, 380 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Phys. Rev. B 58, 7921 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    L.M. Wheeler, L.M. Levij, U.R. Kortshagen, J. Phys. Chem. Lett. 4, 3392 (2013)CrossRefGoogle Scholar
  22. 22.
    C.Y. Chien, W.T. Lai, Y.J. Chang, C.C. Wang, M.H. Kuo, P.W. Li, Nanoscale 6, 5303 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson, P. Pianetta, Appl. Phys. Lett. 88, 021903 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J. Israelachivili, Intermolecular and surface forces, 2nd edn. (Academic Press, London, 1992)Google Scholar
  25. 25.
    V.A. Gavva, T.V. Kotereva, V.A. Lipskiy, A.V. Nezhdanov, Opt. Spectrosc. 120, 255 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Scott, Phys. Rev. B 1, 3488 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    M.F. Ehman, K. Vedam, W.B. White, J.W. Faust Jr., J. Mater. Sci. 6, 969 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    L.P. Lindeman, M.K. Wilson, Spectrochim. Acta 9, 47 (1957)ADSCrossRefGoogle Scholar
  30. 30.
    R.J.H. Clark, C.J. Willis, Inorg. Chem. 10, 1118 (1970)CrossRefGoogle Scholar
  31. 31.
    I.R. Beattie, P.J. Jones, G. Reid, M. Webster, Inorg. Chem. 37, 6032 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yasushi Hamanaka
    • 1
  • Masahiro Iwata
    • 1
  • Junichi Katsuno
    • 1
  1. 1.Department of Physical Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations