Advertisement

Applied Physics A

, 123:410 | Cite as

Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

  • Amit Kumar
  • Neeraj Mehta
Article
  • 69 Downloads

Abstract

The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78−x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V h), formation energy (E h) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated.

Keywords

Glass Transition Temperature Molar Volume Glass Matrix Chalcogenide Glass Glassy Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

NM is thankful to his university for providing grant under the consumable head of DST-Purse program-(5050).

References

  1. 1.
    M. Popescu, Disordered chalcogenide optoelectronic materials: phenomena and applications. J. Optoelectron. Adv. Mater. 7, 2189–2210 (2005)Google Scholar
  2. 2.
    P. Lucas, M. Riley, C. Boussard, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Bio. Chem. 351, 1–10 (2006)Google Scholar
  3. 3.
    P. Lucas, M.A. Solis, D. Le Coq, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard, B. Bureau, Spectroscopic properties of chalcogenide fibers for biosensor applications. Phys. Chem. Glasses 47, 88–91 (2006)Google Scholar
  4. 4.
    T. Ohta, Phase change optical memory promotes the DVD optical disc. J. Optoelectron. Adv. Mater. 3, 609–626 (2001)Google Scholar
  5. 5.
    A.M. Andriesh, M.S. Iovu, S.D. Shutov, Chalcogenide non-crystalline semiconductors in optoelectronics. J. Optoelectron. Adv. Mater. 4, 631–648 (2002)Google Scholar
  6. 6.
    N. Mehta, Application of chalcogenide glasses in electronics and optoelectronics: a review. J. Sci. Ind. Res. 65, 777–786 (2006)Google Scholar
  7. 7.
    W. Vogel, Chemistry of glass (The American Ceramic Society, Columbus, 1985)Google Scholar
  8. 8.
    V.F. Kokoring, Glasses For infrared optics (CRC Press, Boca Raton, 1996)Google Scholar
  9. 9.
    S.-W. Chen, M.-H. Lin, B.-R. Shie, J.-L. Wang, Infrared reactions in As-Se/Zn. J. Non-Cryst. Sol. 220, 243–248 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    S.-D. Ho, Y.-M. Dai, S.-W. Chen, J.-L. Wang, Glass formation, density, microhardness and microstructure of the As-Se-Te chalcogenide alloys. J. Non-Cryst. Sol. 221, 290–296 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    R.H. Hopkins, W.E. Kramer, G.B. Brandt, J.S. Schruben, R.A. Hoffman, K.B. Steinbruegge, T.L. Peterson, Fabrication and evaluation of erosion-resistant multispectral optical windows. J. Appl. Phys. 49, 3133–3139 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    F. Sava, Structure and properties of chalcogenide glasses in the system (As2S3)1−x(Sb2S3)x. J. Optoelectron. Adv. Mater. 3, 425–432 (2001)Google Scholar
  13. 13.
    M.L. Trunov, Photo-induced plasticity in amorphous chalcogenides: an overview of mechanisms and applications. J. Optoelectron. Adv. Mater. 7, 2235–2246 (2005)Google Scholar
  14. 14.
    A.K. Varshneya, Daniel J. Mauro, Microhardness, indentation toughness, elasticity, plasticity and brittleness of Ge-Sb-Se chalcogenide glass. J. Non-Cryst. Sol. 353, 1291–1297 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    V. Vassilev, M. Radonova, S. Boycheva, Glass formation the GeSe2-Sb2 Te3-CdSe system. J. Non-Cryst. Sol. 356, 2728–2733 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Kumar, A. Sharma, N. Mehta, Effect of Bi-incorporation on some thermo-mechanical properties of glassy Se78Te20Sn2 alloy. J. Optoelectron. Adv. Mater. 14, 899–904 (2012)Google Scholar
  17. 17.
    H. Kumar, A. Sharma, N. Mehta, Effect of lead incorporation on some thermo-mechanical properties of glassy Se78Te20Sn2 alloy. Mater. Foc. 2, 184–187 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Srivastava, N. Mehta, Investigation of some thermo-mechanical and dielectric properties in multi-component chalcogenide glasses of Se-Te-Sn-Ag quaternary system. J. Alloy. And Comp. 658, 533–542 (2016)CrossRefGoogle Scholar
  19. 19.
    M.M. Smedskjaer, J.C. Mauro, Y. Yue, Prediction of glass hardness using temperature dependent constraint theory. Phy. Rev. Lett. 105, 115503 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    L. Ainsworth, The diamond pyramid hardness of glass in relation to the strength and structure of glass. J. Soc. Glass Technol. 38, 479–547 (1954)Google Scholar
  21. 21.
    J.H. Westbrook, Hardness temperature characteristics of some simple glasses. Phys. Chem. Glasses 1, 32–36 (1960)Google Scholar
  22. 22.
    J.E. Neely, J.D. Mackenzie, Hardness and low temperature deformation of silica glass. J. Mater. Sci. 3, 603–609 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    N.A. Ghoneim, H.A. Batal, Microhardness and softening point of some alumino-borate glasses as flow dependent properties. J. Non-cryst. Sol. 55, 343–351 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Arora, G.S. Trivikramaand, N.M. Batra, Vickers micromechanical indentation of BaMoO4 crystals. J. Mater. Sci. 19, 297–302 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Bovcheva, V.S. Vassilev, P. Petkov, New chalcogenide glasses in the GeSe2-As2Se3-CdTe system. J. Optoelectron. Adv. Mater. 3, 503–508 (2001)Google Scholar
  26. 26.
    L. Tichy, H. Ticha, Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Sol. 189, 141–146 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    M. Vlcek, M. Frumar, Model of photoinduced changes of optical properties in amorphous layers and glasses of Ge-Sb-S, Ge-S, As-S, and As-Se systems. J. Non-Cryst. Solids 97&98, 1223–1226 (1987)CrossRefGoogle Scholar
  28. 28.
    E. Savova, E. Skordeva, E. Vateva, The topological phase transition in some Ge-Sb-S glasses and thin films. J. Phys. Chem. Sol. 55, 575–578 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    E. Skordeva, D. Arsova, A topological phase transition in ternary chalcogenide films. J. Non-Cryst. Sol. 192&193, 665–668 (1995)CrossRefGoogle Scholar
  30. 30.
    V. Vassilev, M. Radonova, S. Boycheva, Glass formation in the GeSe2-Sb2Te3-CdSe system. J. Non-cryst. Sol. 356, 2728–2733 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    G. Saffarini, Compositional trends of the compactness in ternary chalcogenide glasses of the Ge-In-Se system. Phys. B 253, 52–55 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    L. Aljihmani, K. Petkov, V. Vassilev, Glass forming region in GeSe2-GeTe-PbTe system and some physicochemical properties of glassy alloys. J. Non-cryst. Sol. 358, 364–367 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations