Advertisement

Applied Physics A

, 123:376 | Cite as

Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation

  • C. Kalupka
  • D. Großmann
  • M. Reininghaus
Article

Abstract

We report on investigations of the energy deposition in the volume of thin glass during an ablation cutting process with pulsed femtosecond laser radiation by time-resolved pump-probe shadowgraphy. For a single laser pulse, the temporal evolution of the transient electronic excitation of the glass volume is imaged up to 10 ps after initial excitation. For an increasing number of laser pulses, the spatial excitation of the glass volume significantly changes compared to single pulse irradiation. Sharp spikes are observed, which reduce the transmission of the illuminating probe pulse. This indicates local maxima of the absorption and, therefore, energy deposition of the pump pulse energy in the glass volume. Furthermore, for an increasing number of pulses, different shapes of the surface ablation crater are observed. To study the correlation between the shape of the surface ablation crater and the energy deposition in the glass volume, simulations of the spatial intensity distribution of the pump pulse are executed by means of linear beam propagation method. We show that the transient excitation spikes observed by pump-probe shadowgraphy can be explained by refraction and diffraction of the laser radiation at the surface ablation crater. Our results provide an experimental validation for the physical reason of an ablation stop for an ablation cutting process. Moreover, the simulations allow for the prediction of damage inside the glass volume.

Keywords

Pump Pulse Probe Pulse Ablation Crater Pump Pulse Energy Spatial Intensity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the German Federal Ministry of Education and Research (BMBF) (13N13309).

References

  1. 1.
    D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. A 79(3), 605–612 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65(4), 367–373 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ben-Yakar, R.L. Byer, J. Appl. Phys. 96(9), 5316–5323 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, W. Schulz, Opt. Exp. 21(7), 7858–7867 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, Z. Lin, Opt. Laser Tech. 80, 227–236 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    N.M. Bulgakova, V.P. Zhukov, A.R. Collins, D. Rostohar, T.J.Y. Derrien, T. Mocek, Appl. Surf. Sci. 336, 364–374 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J.V. Aldana, C. Méndez, L. Roso, P. Moreno, J. Appl. Phys. D 38(16), 2764 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sun, U. Eppelt, W. Schulz, J. Zhu, Opt. Mat. Expr. 3(10), 1716–1726 (2013)CrossRefGoogle Scholar
  9. 9.
    K. Wædegaard, D.B. Sandkamm, L. Haahr-Lillevang, K.G. Bay, P. Balling, Appl. Phys. A 117(1), 7–12 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, S. Nolte, Appl. Phys. A 112(3), 623–629 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53(4), 1749 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    C.B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12(11), 1784 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81(8), 1015–1047 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85(9), 6803–6810 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Feit, A.M. Komashko, A.M. Rubenchik, Appl. Phys. A 79(7), 1657–1661 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    L. Jiang, H.L. Tsai, J. Appl. Phys. D 37(10), 1492 (2004)CrossRefGoogle Scholar
  17. 17.
    L. Haahr-Lillevang, K. Wædegaard, D.B. Sandkamm, A. Mouskeftaras, S. Guizard, P. Balling, Appl. Phys. A 120(4), 1221–1227 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    P. Audebert, P. Daguzan, A. Dos Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonetti, Phys. Rev. Lett. 73(14), 1990 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A 81(8), 1627–1632 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27(5), 1065–1076 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, O. Utéza, J. Appl. Phys. 116(6), 063105 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, Appl. Phys. Lett. 105(11), 112902 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Lebugle, O. Utéza, M. Sentis, N. Sanner, Appl. Phys. A 120(2), 455–461 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A 79(7), 1695–1709 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, Q. Gong, Opt. Lett. 30(3), 320–322 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, R. Poprawe, Opt. Expr. 24(20), 23221–23231 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    C. Kalupka, J. Finger, M. Reininghaus, J. Appl. Phys. 119(15), 153105 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    M. Grehn, T. Seuthe, W.J. Tsai, M. Höfner, A.W. Achtstein, A. Mermillod-Blondin, M. Eberstein, H.J. Eichler, J. Bonse, Opt. Mat. Expr. 3(12), 2132–2140 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, D. von der Linde, Proc. SPIE 3343, 46 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    A. Collins, D. Rostohar, C. Prieto, Y.K. Chan, Opt. Lasers Eng. 60, 18–24 (2014)CrossRefGoogle Scholar
  31. 31.
    D. Yevick, Opt. Quantum Electron 26(3), S185–S197 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Chair for Laser Technology LLTRWTH Aachen UniversityAachenGermany
  2. 2.TRUMPF Laser- und Systemtechnik GmbHDitzingenGermany
  3. 3.Fraunhofer Institute for Laser Technology ILTAachenGermany

Personalised recommendations