Applied Physics A

, 123:368 | Cite as

Nonlinear graphene-based nanophotonic switch working in dense wavelength division multiplexing (DWDM) systems

  • A. J. Wirth L.Email author
  • A. C. Ferreira
  • A. S. B. Sombra


Fiber-based devices for operation in fully optical networks are relatively large in size and can not be used in photonic integrated circuits (PICs). We have developed an efficient graphene-based nanophotonic switching nanocell, working in linear regime (cross state) and in non-linear regime (bar state) with relatively low optical power, so that they can be cascaded and integrated in PICs. Indeed, that device is a fully optical switch, which can work in dense wavelength division multiplexing systems.


Coupler Graphene Layer Directional Coupler Linear Regime Dirac Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly sponsored by the National Council for Scientific and Technological Development (CNPq). To Prof. Dr. Victor Dmitriev Alexandrovic, (UFPA) for calculations using the COMSOL.


  1. 1.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)zbMATHGoogle Scholar
  4. 4.
    Ch-H Park, F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 086804 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport. Appl. Phys. Science 104(47), 18392–18397 (2007)Google Scholar
  6. 6.
    L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    C.H. Gan, H.S. Chu, E.P. Li, Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies. Phys. Rev. B. 85, 125431 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. Koppens, F.J.G. de Abajo, Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons. Am. Chem. Soc. 6(1), 431–440 (2012)Google Scholar
  9. 9.
    S.A. Mikhailov, K. Ziegler, New Electromagnetic Mode in Graphene. Phys. Rev. Lett. 99, 016803 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat Photonics 4, 611 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. 8, S87–S93 (2006)ADSGoogle Scholar
  12. 12.
    W.A. Murray, W.L. Barnes, Plasmonic Materials. Adv. Mater. 19, 3771–3782 (2007)CrossRefGoogle Scholar
  13. 13.
    F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11, 3370–3377 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Bao, K.P. Loh, ACS Nano 6, 3677–3694 (2012)CrossRefGoogle Scholar
  15. 15.
    B. Wang, X. Zhang, X. Yuan, J. Teng, Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100, 131111 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    N.D. Mermin, Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 2362–2363 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    S. Sengupta, D. S. R. Aravind, V. Richarson, Someeswahr, B. B. T. Sundari, Graphene based interconnect modelling. In Proceedings of SARC-ITR international conference, Chennai, India, ISBN: 978-93-84209-14-8 (2014)Google Scholar
  18. 18.
    Z. Cheng, H. K. Tsang, X. Wang, C. Y. Wong, X. Chen, K. Xu, Z. Shi, J. B. Xu, Polarization dependent loss and all-optical modulation in graphene on suspended membrane waveguides, Cornell University Library, arXiv:1211.5946v1 (2012)
  19. 19.
    A. Vakil and Nader Engheta, One-atom-thick IR Metamaterials and transformation optics using graphene, Cornell University Library, arXiv:1101.3585v1 (2011)
  20. 20.
    H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, T. Palacios, BN/graphene/BN transistors for RF applications. IEEE Electron Device Lett. 32(9), 1209–1211 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    T. Ando, Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn. 75, 074716 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M.I. Katsnelson, A.K. Geim, Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 366, 195–204 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Ying (lan) Chen (ed.), Nanotubes and Nanosheets (CRC Press, Taylor e Francis group, 2015). (ISBN: 13:978-1-4665-9810-2) Google Scholar
  24. 24.
    R. Zan, Q.M. Ramasse, R. Jadil, U. Bangert, in Atomic Structure of Graphene and h-BN Layers and Their Interactions with Metals, ed. by M. Aliofkhazraei. Advances in Graphene Science (2013). doi: 10.5772/56640
  25. 25.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A.L.J. Wirth, M.G. da Silva, D.M.C. Neves, A.S.B. Sombra, Nanophotonic graphene-based racetrack-resonator add/drop filter. Optics Communications 366, 210–220 (2016). doi: 10.1016/j.optcom.2015.12.054 ADSCrossRefGoogle Scholar
  27. 27.
    A.L.J. Wirth, J.C.N. Moura, A.S.B. Sombra, Attenuations, Dispersions and Nonlinearities in Graphene-Based Waveguides. Beilstein J. Nanotechnol. 6, 1221–1228 (2015). doi: 10.3762/bjnano.6.125 CrossRefGoogle Scholar
  28. 28.
    A.K. Raj, B.T.B. Sundari, Compact graphene field effect transistor modeling with quantum capacitance effects. ARPN J. Eng. Appl. Sci. 11(2), 1347–1351 (2016)Google Scholar
  29. 29.
    G.P. Agrawal, Nonlinear fiber optics, 2nd edn. (Academic Press, Cambridge, 1995). (ISBN 0-12-045142-5) zbMATHGoogle Scholar
  30. 30.
    J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. Koppens, F.J.G. De Abajo, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. Am. Chem. Soc. 6(1), 431–440 (2012)Google Scholar
  31. 31.
    S. Thongrattanasiri, A. Manjavacas, F.J. García de Abajo, Quantum Finite-Size Effects in Graphene Plasmons. ACS Nano 6, 1766–1775 (2012)CrossRefGoogle Scholar
  32. 32.
    Z.L. Sámson, P. Horak, K.F. MacDonald, N.I. Zheludev, Femtosecond surface plasmon pulse propagation. Opt. Lett. 36(2), 250–252 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. He, X. Zhang, Y. He, Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt. Express 21(25), 30664 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    H. Zhang, S. Virally, Q. Bao, K. P. Loh, S. Massar, N. Godbout and P. Kockaert, Large nonlinear Kerr effect in graphene, arXiv:1203.5527v1 (2012)
  35. 35.
    International Telecommunication Union, Telecomunication Standardization Sector (ITU-T), “Series G: Transmission systems and media digital systems and networks”, Recommendation G.694.1 (2012)Google Scholar
  36. 36.
    A. F. Young, C. R. Dean, I. Meric, S. Sorgenfrei, H. Ren, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim, Electronic compressibility of gapped bilayer graphene, arXiv:1004.5556v2 (2010)
  37. 37.
    Z.J. Qi, S.J. Hong, J.A. Rodríguez-Manzo, N.J. Kybert, R. Gudibande, M. Drndic′, Y.W. Park, A.T.C. Johnson, Electronic Transport in Heterostructures of Chemical Vapor Deposited Graphene and Hexagonal Boron Nitride. Wiley-VCH Verlag GmbH & Co. KGaA (2014). doi: 10.1002/smll.201402543 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. J. Wirth L.
    • 1
    • 2
    Email author
  • A. C. Ferreira
    • 1
    • 2
  • A. S. B. Sombra
    • 1
    • 2
  1. 1.Laboratory of Telecommunications and Materials Science and EngineeringFortalezaBrazil
  2. 2.Department of Physics, Science CenterFederal University of Ceará (U.F.C.)FortalezaBrazil

Personalised recommendations