Applied Physics A

, 123:326 | Cite as

Synthesis of SnO\(_2\) nanoparticles by electrooxidation of tin in quaternary ammonium salt for application in dye-sensitized solar cells

  • Masoud Abrari
  • Majid Ghanaatshoar
  • Saied Saeed Hosseiny Davarani
  • Hamid Reza Moazami
  • Iraj Kazeminezhad


A facile synthetic route has been employed to prepare tin oxide nanoparticles. The route comprises anodic dissolution of metallic tin in the presence of tetramethylammonium chloride called electrooxidation. The effect of experimental parameters was investigated with special focus on solution pH. The obtained nanostructures have been characterized by XRD, EDS, TEM, FESEM, FTIR and UV–visible studies. The results show that the solution pH has a critical influence on the nanoparticles properties. The hydrophilic feature of nanoparticles decreases with pH growth, whereas their mean size increases. On the other hand, the size distribution is much uniform for the samples prepared at low pH. Having achieved the nanoparticles by electrooxidation, the dye-sensitized solar cells based on the produced SnO\(_2\) nanoparticles were fabricated and the influence of nanoparticles on their performance was investigated. By variation in solution pH, we prepared nanoparticles with different particle sizes and photoanodes with various dye-loading abilities. The dye absorption and consequently current density of cells increased in acidic case, and therefore, power conversion efficiency grew up by 33% in acidic synthetic environment.


Power Conversion Efficiency Effective Surface Area High Power Efficiency Tetramethylammonium Chloride Energy Dispersive Spectrometer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Zhang, Y. Liu, K. Zhu, G. Siu, Y. Xiong, C. Xiong, Fourier transform infrared characterization of nanometre SnO\(_2\). J. Phys. Condens. Matter. 10, 11121 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M. Asemi, M. Ghanaatshoar, The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells. Appl. Phys. A. 122, 842 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Wali, A. Fakharuddin, R. Jose, Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges. J. Power Sources 293, 103952 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Birkel, Y.G. Lee, D. Koll, Meerbeek X. Van, S. Frank, M.J. Choi et al., Highly efficient and stable dye-sensitized solar cells based on SnO\(_2\) nanocrystals prepared by microwave-assisted synthesis. Energy Environ. Sci. 5, 5392400 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Niu, S. Zhang, R. Wang, Z. Guo, X. Shang, W. Gan et al., Dye-sensitized solar cells employing a multifunctionalized hierarchical SnO\(_2\) nanoflower structure passivated by TiO\(_2\) nanogranulum. J. Phys. Chem. C 118, 350413 (2014)Google Scholar
  6. 6.
    T.T. Duong, H.J. Choi, Q.J. He, A.T. Le, S.G. Yoon, Enhancing the efficiency of dye-sensitized solar cells with an SnO\(_2\) blocking layer grown by nanocluster deposition. J. Alloys Compd. 561, 20610 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Gubbala, H.B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkema et al., Surface properties of SnO\(_2\) nanowires for enhanced performance with dye-sensitized solar cells. Energy Environ. Sci. 2, 13029 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel poly(ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram Int. 41, 567–75 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd\(_2\)Zr\(_2\)O\(_7\)-Nd\(_2\)O\(_3\) nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd\(_2\)Zr\(_2\)O\(_7\) nanostructures prepared by a modified Pechini approach. Sep. Purif. Technol. 179, 77–85 (2017)CrossRefGoogle Scholar
  11. 11.
    F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of HgI\(_2\) nanostructures via a new facile route. Mater. Lett. 193, 9–12 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Facile size-controlled preparation of highly photocatalytically active praseodymium zirconate nanostructures for degradation and removal of organic pollutants. Sep. Purif. Technol. 177, 110–120 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Ghanbari, M. Bazarganipour, M. Salavati-Niasari, Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Sep. Purif. Technol. 173, 27–36 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Masjedi-Arani, M. Salavati-Niasari, Simple size-controlled fabrication of Zn\(_2\)SnO\(_4\) nanostructures and study of their behavior in dye sensitized solar cells. Int. J. Hydrogen Energy 42, 858–866 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu\(_2\)S, Cu\(_2\)S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120, 2096–2108 (2016)CrossRefGoogle Scholar
  16. 16.
    O. Amiri, M. Salavati-Niasari, A. Rafiei, M. Farangi, 147% improved efficiency of dye synthesized solar cells by using CdS QDs, Au nanorods and Au nanoparticles. RSC Adv. 4, 62356–62361 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO\(_2\)) nanostructures: structural, optical and photocatalytic studies. J. Mol. Liq. 216, 545–551 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Dadkhah, F. Ansari, M. Salavati-Niasari, Thermal treatment synthesis of SnO\(_2\) nanoparticles and investigation of its light harvesting application. Appl. Phys. A. 122, 700 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    U. Kersen, The gas-sensing potential of nanocrystalline SnO\(_2\) produced by a mechanochemical milling via centrifugal action. Appl. Phys. A. 75, 559–563 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M. Asemi, M. Ghanaatshoar, Hydrothermal growth of one-dimensional Ce-doped TiO\(_2\) nanostructures for solid-state DSSCs comprising Mg-doped CuCrO\(_2\). J. Mater. Sci. 52, 489–503 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Lai, J.H. Lim, S. Mubeen, Y. Rheem, A. Mulchandani, M.A. Deshusses, N.V. Myung, Size-controlled electrochemical synthesis and properties of SnO\(_2\) nanotubes. Nanotechnology 20, 185602 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    S. Kim, H. Lee, C.M. Park, Y. Jung, Synthesis of tin oxide nanoparticle film by cathodic electrodeposition. J. Nanosci. Nanotechnol. 12, 1616–1619 (2012)CrossRefGoogle Scholar
  23. 23.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, A.R. Keshtkar, Synthesis of manganese dioxide nanosheets and charge storage evaluation. Mater. Sci. Semicond. Process. 30, 682–687 (2015)CrossRefGoogle Scholar
  24. 24.
    H.R. Moazami, S.S.H. Davarani, T. Yousefi, H. Darjazi, Iron mediated cathodic electrosynthesis of hausmannite nanoparticles. Mater. Sci. Semicond. Process. 38, 240–248 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Darjazi, S.S.H. Davarani, H.R. Moazami, T. Yousefi, F. Tabatabaei, Evaluation of charge storage ability of chrome doped Mn\(_2\)O\(_3\) nanostructures derived by cathodic electrodeposition. Prog. Nat. Sci. 26, 523–527 (2016)CrossRefGoogle Scholar
  26. 26.
    I. Kazeminezhad, A. Sadollahkhani, M. Farbod, Synthesis of ZnO nanoparticles and flower-like nanostructures using nonsono- and sono-electrooxidation methods. Mater. Lett. 92, 2932 (2013)CrossRefGoogle Scholar
  27. 27.
    Zh Boroun, M.R. Vaezi, G. Kavei, A.A. Youzbashi, I. Kazeminezhad, Electrochemical synthesis of nanostructured nickel oxide powder using nickel as anode. Mater. Lett. 106, 175–177 (2013)CrossRefGoogle Scholar
  28. 28.
    B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 43, 30–59 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    H. Younes, G. Christensen, X. Luan, H. Hong, P. Smith, Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe\(_2\)O\(_3\) and CuO nanoparticles. J. Appl. Phys. 111, 064308 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Q.T. Khuc, X.H. Vu, D.V. Dang, D.C. Nguyen, The influence of hydrothermal temperature on SnO\(_2\) nanorod formation. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 25010 (2010)CrossRefGoogle Scholar
  31. 31.
    H. Zhang, Y. Liu, K. Zhu, G. Siu, Y. Xiong, C. Xiong, Fourier transform infrared characterization of nanometre SnO\(_2\). J. Phys. Condens. Mat. 10, 11121–11127 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    P. Chetri, A. Choudhury, Investigation of optical properties of SnO\(_2\) nanoparticles. Phys. E 47, 257–263 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene-SnO\(_2\) composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 23, 355705–355813 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Zhan, D. Li, S. Liang, X. Chen, X. Li, A novel flexible room temperature ethanol gas sensor based on SnO\(_2\) doped poly-diallyldimethylammonium chloride. Sensors 13, 4378–4389 (2013)CrossRefGoogle Scholar
  35. 35.
    K. Arora, M. Tomar, V. Gupta, Effect of processing parameters for electrocatalytic properties of SnO\(_2\) thin film matrix for uric acid biosensor. Analyst 139, 837–849 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    M. Asemi, M. Ghanaatshoar, Preparation of CuCrO\(_2\) nanoparticles with narrow size distribution by sol–gel method. J. Sol. Gel. Sci. Technol. 70, 416–421 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Dou, R.R. Prabhakar, N. Mathews, Y.M. Lam, S. Mhaisalkar, Zn-doped SnO\(_2\) nanocrystals as efficient DSSC photoanode material and remarkable photocurrent enhancement by interface modification. J. Electrochem. Soc. 159, H7359 (2012)CrossRefGoogle Scholar
  38. 38.
    Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, R. Jose, SnO\(_2\)TiO\(_2\) hybrid nanofibers for efficient dye-sensitized solar cells. Sol. Energy 132, 395404 (2016)CrossRefGoogle Scholar
  39. 39.
    A.Y. El-Etre, S.M. Reda, Characterization of nanocrystalline SnO\(_2\) thin film fabricated by electrodeposition method for dye-sensitized solar cell application. Appl. Surf. Sci. 256, 6601–6606 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    M.A. Hossain, G. Yang, M. Parameswaran, J.R. Jennings, Q. Wang, Mesoporous SnO\(_2\) spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells. J. Phys. Chem. C 114, 21878–21884 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Basu, D. Benetti, H. Zhao, L. Jin, F. Vetrone, A. Vomiero et al., Enhanced photovoltaic properties in dye-sensitized solar cells by surface treatment of SnO\(_2\) photoanodes. Sci. Rep. 6, 23312 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Zhou, C. Xia, X. Hu, W. Huang, A.A. Aref, B. Wang et al., Dye-sensitized solar cells based on nanoparticle-decorated ZnO/SnO\(_2\) core/shell nanoneedle arrays. Appl. Surf. Sci. 292, 1116 (2014)Google Scholar
  43. 43.
    Z. Li, Y. Zhou, W. Mao, Z. Zou, Nanowire-based hierarchical tin oxide/zinc stannate hollow microspheres: enhanced solar energy utilization efficiency for dye-sensitized solar cells and photocatalytic degradation of dyes. J. Power Sources 274, 57581 (2015)Google Scholar
  44. 44.
    G. Shang, J. Wu, S. Tang, L. Liu, X. Zhang, Enhancement of photovoltaic performance of dye-sensitized solar cells by modifying tin oxide nanorods with titanium oxide layer. J. Phys. Chem. C 117, 434550 (2013)Google Scholar
  45. 45.
    C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng et al., A facile method to prepare SnO\(_2\) nanotubes for use in efficient SnO\(_2\)-TiO\(_2\) core–shell dye-sensitized solar cells. Nanoscale 4, 347581 (2012)Google Scholar
  46. 46.
    A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem. Phys. Chem. 4, 85964 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Masoud Abrari
    • 1
    • 2
  • Majid Ghanaatshoar
    • 1
    • 2
  • Saied Saeed Hosseiny Davarani
    • 2
    • 3
  • Hamid Reza Moazami
    • 4
  • Iraj Kazeminezhad
    • 5
  1. 1.Laser and Plasma Research InstituteShahid Beheshti University, G.C.TehranIran
  2. 2.Solar Cells Research GroupShahid Beheshti University, G.C.TehranIran
  3. 3.Faculty of ChemistryShahid Beheshti University, G.C.TehranIran
  4. 4.School of Physics and AcceleratorsNSTRITehranIran
  5. 5.Nanotechnology Laboratory, Department of PhysicsShahid Chamran University of AhvazAhvazIran

Personalised recommendations