Applied Physics A

, 123:320 | Cite as

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

  • R. ZabelsEmail author
  • I. Manika
  • K. Schwartz
  • J. Maniks
  • A. Dauletbekova
  • R. Grants
  • M. Baizhumanov
  • M. Zdorovets


The emergence of dislocations and hardening of LiF crystals irradiated to high doses with 12C ions have been investigated using chemical etching, AFM, nanoindentation, and thermal annealing. At fluences ensuring the overlapping of tracks (Ф ≥6 × 1011 ions/cm2), the formation of dislocation-rich structure and ion-induced hardening is observed. High-fluence (1015 ions/cm2) irradiation with 12C ions causes accumulation of extended defects and induces hardening comparable to that reached by heavy ions despite of large differences in ion mass, energy, energy loss, and track morphology. The depth profiles of hardness indicate on a notable contribution of elastic collision mechanism (nuclear loss) in the damage production and hardening. The effect manifests at the end part of the ion range and becomes significant at high fluences (≥1014 ions/cm2).


Dislocation Loop High Fluences Selective Chemical Etching Room Temperature Irradiation Defect Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.


  1. 1.
    D.K. Avasthi, G.K. Mehta, Swift Heavy Ions for Materials Engineering and Nanostructuring. (Springer, New Delhi, 2011)CrossRefGoogle Scholar
  2. 2.
    P. Apel, Nucl. Instr. Meth. B 208, 11 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    K. Schwartz, C. Trautmann, T. Steckenreiter, O. Greib, M. Krämer, Phys. Rev. B 58, 11232 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    K. Schwartz, A.E. Volkov, M.V. Sorokin, R. Neumann, C. Trautmann, Phys. Rev. B 82, 144116 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    K. Schwartz, J. Maniks, I. Manika, Phys. Scr. 90, 094011 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    R. Zabels, I. Manika, K. Schwartz, J. Maniks, R. Grants, Nucl. Instr. Meth. B 326, 318 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Maniks, I. Manika, R. Zabels, R. Grants, E. Tamanis, K. Schwartz, Nucl. Instr. Meth. B 282, 81 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Dauletbekova, J. Maniks, I. Manika, R. Zabels, A.T. Akilbekov, M.V. Zdorovets, Y. Bikhert, K. Schwartz, Nucl. Instr. Meth. B 286, 56 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J. Maniks, I. Manika, R. Grants, R. Zabels, K. Schwartz, M. Sorokin, R.M. Papaleo, Appl. Phys. A 104, 1121 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dauletbekova, K. Schwartz, M.V. Sorokin, M. Baizhumanov, A. Akilbekov, M. Zdorovets, Nucl. Instr. Meth. B 359, 53 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J.J. Gilman, W.G. Johnston, J. Appl. Phys. 29, 877 (1958)ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Gilman, W.G. Johnston, G.W. Sears, J. Appl. Phys. 29, 747 (1958)ADSCrossRefGoogle Scholar
  13. 13.
    W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30, 129 (1959)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping And Range Of Ions In Solids (Pergamon Press, New York, 1985)Google Scholar
  15. 15.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    I. Manika, J. Maniks, K. Schwartz, J. Phys. D Appl. Phys. 41, 074008 (2008)CrossRefGoogle Scholar
  17. 17.
    I. Manika, J. Maniks, Acta Mater. 54, 2049 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Hijazi, H. Rothard, P. Boduch, I. Alzaher, F. Ropars, A. Cassimi, J.M. Ramillon, T. Been, B. Ban d’Etat, H. Lebius, L.S. Farenzena, E.F. da Silveira, Nucl. Instr. Meth. B 269, 1003 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R. Zabels, I. Manika, K. Schwartz, M. Baizhumanov, R. Grants, E. Tamanis, A. Dauletbekova, M. Zdorovets, Phys. Stat. Sol. B 253, 1511 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    R. Zabels, I. Manika, K. Schwartz, J. Maniks, R. Grants, M. Sorokin, M. Zdorovets, Appl. Phys. A 120, 167 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Maniks, R. Zabels, I. Manika, IOP Conf. Series: Mater. Sci. Eng. 38, 012017 (2012)CrossRefGoogle Scholar
  22. 22.
    V.R. Regel, L.I. Alekseeva, A.A. Urusovskaya, G.G. Knab, G.V. Sotserdotova, Radiat. Eff. 82, 157 (1984)CrossRefGoogle Scholar
  23. 23.
    M.V. Sorokin, K. Schwartz, K.-O. Voss, O. Rosmej, A.E. Volkov, R. Neumann, Nucl. Instr. Meth. B 285, 24 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    L.W. Hobbs, A.E. Hughes, D. Pooley, R. Proc. Soc. London A, 332, 167 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Kawamata, J. Phys. Colloques 37(C7), C7–C502 (1976)CrossRefGoogle Scholar
  26. 26.
    E.A. Kotomin, A.I. Popov, in Radiation effects in solids, ed. by K.E. Sickafus et al (Springer, Amsterdam, 2007), p. 153CrossRefGoogle Scholar
  27. 27.
    S.J. Zinkle, V.A. Skuratov, Nucl. Instr. Meth. B 141, 737 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    A.T. Davidson, J.D. Comins, A.M.J. Raphuthi, A.G. Kozakiewicz, E.J. Sendezera, T.E. Derry, J. Phys.: Condens. Matter. 7, 3211 (1995)ADSGoogle Scholar
  29. 29.
    I. Manika, J. Maniks, M. Toulemonde, K. Schwartz, Nucl. Instr. Meth. B 267, 949 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    P. Thevenard, G. Guiraud, C.H.S. Dupuy, B. Delaunay, Radiat. Eff. 32, 83 (1977)CrossRefGoogle Scholar
  31. 31.
    C. Riedel, R. Sphor, Radiat. Eff. 42, 69 (1979)CrossRefGoogle Scholar
  32. 32.
    R. Sphor, Ion tracks and Microtechnology principles and applications, K. Bethge (Ed.), (Vieweg & Sohn, Braunschweig, 1990), p. 177Google Scholar
  33. 33.
    N. Ishikawa, K. Ohhara, Y. Ohta, O. Michikami, Nucl. Instr. Meth. B 268, 3273 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • R. Zabels
    • 1
    Email author
  • I. Manika
    • 1
  • K. Schwartz
    • 2
  • J. Maniks
    • 1
  • A. Dauletbekova
    • 3
  • R. Grants
    • 1
  • M. Baizhumanov
    • 3
  • M. Zdorovets
    • 4
  1. 1.Institute of Solid State Physics, University of LatviaRigaLatvia
  2. 2.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  3. 3.L.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  4. 4.Institute of Nuclear PhysicsAlmatyKazakhstan

Personalised recommendations