Applied Physics A

, 123:262 | Cite as

Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance

  • M. Alexiadou
  • M. KandylaEmail author
  • G. Mousdis
  • M. Kompitsas


We fabricate and compare nanocomposite thin-film ZnO chemoresistive acetone sensors with gold or palladium nanoparticles on the surface, at low operating temperatures. The sensors are fabricated by pulsed laser deposition and operate in the temperature range 159–200 °C. The ZnO films are polycrystalline, crystallizing mainly at the (002) and (101) orientations of the hexagonal phase. The nanocomposite ZnO:Au and ZnO:Pd sensors have a lower detection limit and show a response enhancement factor between 2 and 7, compared with pure ZnO sensors. The ZnO:Pd sensor performs better than the ZnO:Au sensor. The ZnO:Pd sensor sensitivity increases with the amount of palladium on the surface, while it remains roughly unchanged with the ZnO thickness. The lowest acetone concentration we detect is 26 ppm for the operating temperature of 200 °C.


Palladium Nanoparticles Acetone Concentration Pulse Laser Deposition Process Nanocomposite Sensor Palladium Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of this work by the General Secretariat for Research and Technology, Greece, (project Polynano-Kripis 447963) is gratefully acknowledged.

Supplementary material

339_2017_900_MOESM1_ESM.docx (274 kb)
Supplementary material 1 (DOCX 273 KB)


  1. 1.
    Z. Wang and C. Wang, Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath. Res. 7, 037109 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    C. Wang and P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230–8261 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010)CrossRefGoogle Scholar
  4. 4.
    Q.-Q. Jia, H.-m.. Ji, D.-H. Wang, X. Bai, X.-H. Sun, Z.-G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2, 13602–13611 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Shan et al., Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184 243–247 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Sun, H. Ji, X. Li, S. Cai, C. Zheng, Mesoporous In2O3 with enhanced acetone gas-sensing property. Mater. Lett. 120, 287–291 (2014)CrossRefGoogle Scholar
  7. 7.
    W.Q. Li et al., Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett 132, 338–341 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Qi et al., Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery. Sens. Actuators B 134 166–170 (2008)CrossRefGoogle Scholar
  9. 9.
    S.H. Yan et al., Preparation of SnO2-ZnO hetero-nanofibers and their application in acetone sensing performance. Mater. Lett. 159, 447–450 (2015)CrossRefGoogle Scholar
  10. 10.
    X.B. Li, Porous spheres-like ZnO nanostructures as sensitive gas sensors for acetone detection. Mater. Lett. 100, 119–123 (2013)CrossRefGoogle Scholar
  11. 11.
    D. An, Y. Li, X. Lian, Y. Zou, G. Deng, Synthesis of porous ZnO structures for gas sensor and photocatalytic applications. Colloid. Surf. A 447, 81–87 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater. Sci. Eng. C 32, 817–821 (2012)CrossRefGoogle Scholar
  13. 13.
    C.S. Prajapati and P.P. Sahay, Influence of In doping on the structural, optical and acetone sensing properties of ZnO nanoparticulate thin films. Mater. Sci. Semicond. Process. 16, 200–210 (2013)CrossRefGoogle Scholar
  14. 14.
    G.H. Zhang et al., Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor. Mater. Lett. 165, 83–86 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Tian, Y. Liu, K. Guo, Au nanoparticle modified flower-like ZnO structures with their enhanced properties for gas sensing. Mater. Sci. Semicond. Process. 21, 140–145 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Zeng et al., Growth and selective acetone detection based on ZnO nanorod arrays, Sens. Actuators B 143, 93–98 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Luo et al., The mesoscopic structure of flower-like ZnO nanorods for acetone detection. Mater. Lett. 121, 137–140 (2014)CrossRefGoogle Scholar
  18. 18.
    S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor. Talanta 85, 943–949 (2011)CrossRefGoogle Scholar
  19. 19.
    H. Bian et al., Improvement of acetone gas sensing performance of ZnO nanoparticles. J. Alloys Compd. 658, 629–635 (2016)CrossRefGoogle Scholar
  20. 20.
    S.S. Nath, M. Choudhury, D. Chakdar, G. Gope, R.K. Nath, Acetone sensing property of ZnO quantum dots embedded on PVP. Sens. Actuators B 148, 353–357 (2010)CrossRefGoogle Scholar
  21. 21.
    I. Sta et al., Hydrogen sensing by sol-gel grown NiO and NiO:Li thin films. J. Alloys Compd. 626, 87–92 (2015)CrossRefGoogle Scholar
  22. 22.
    X.-j. Wang, W. Wang, Y.-L. Liu, Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sens. Actuators B 168, 39–45 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Lin et al., Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures. J. Alloys Compd. 650, 37–44 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Kandyla, C. Chatzimanolis-Moustakas, E.P. Koumoulos, C. Charitidis, M. Kompitsas, Nanocomposite NiO:Au hydrogen sensors with high sensitivity and low operating temperature. Mater. Res. Bull. 49, 552–559 (2014)CrossRefGoogle Scholar
  25. 25.
    I. Sta et al., Surface functionalization of sol-gel grown NiO thin films with palladium nanoparticles for hydrogen sensing. Int. J. Hydrog Energy 41, 3291–3298 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.-C. Liang, W.-K. Liao, X.-S. Deng, Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures. J. Alloys Compd. 599, 87–92 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Khandelwal et al., Effects of deposition temperature on the structural and morphological properties of thin ZnO films fabricated by pulsed laser deposition. Opt. Laser Technol. 40, 247–251 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Growth of ZnO thin films by ultraviolet pulsed-laser ablation: study of plume dynamics. J. Appl. Phys. 98, 123301 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    I. Fasaki, M. Kandyla, M. Kompitsas, Properties of pulsed laser deposited nanocomposite NiO:Au thin films for gas sensing applications, Appl. Phys. A 107 (2012) 899–904.CrossRefGoogle Scholar
  30. 30.
    I. Fasaki, M. Kandyla, M.G. Tsoutsouva, M. Kompitsas, Optimized hydrogen sensing properties of nanocomposite NiO:Au thin films grown by dual pulsed laser deposition. Sens. Actuators B 176, 103–109 (2013)CrossRefGoogle Scholar
  31. 31.
    E. Gyorgy, J. Santiso, A. Figueras, A. Giannoudakos, M. Kompitsas, I.N. Mihailescu, Morphology evolution and local electric properties of Au nanoparticles on ZnO thin films. J. Appl. Phys. 98, 84302 (2005)CrossRefGoogle Scholar
  32. 32.
    N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)CrossRefGoogle Scholar
  33. 33.
    M. El-Maazawi, A.N. Finken, A.B. Nair, V.H. Grassian, Adsorption and photocatalytic oxidation of acetone on TiO2: an in situ transmission FT-IR study. J. Catal. 191, 138–146 (2000)CrossRefGoogle Scholar
  34. 34.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    M. Kandyla, C. Chatzimanolis-Moustakas, M. Guziewicz, M. Kompitsas, Nanocomposite NiO:Pd hydrogen sensors with sub-ppm detection limit and low operating temperature. Mater. Lett. 119, 51–55 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. Alexiadou
    • 1
  • M. Kandyla
    • 1
    Email author
  • G. Mousdis
    • 1
  • M. Kompitsas
    • 1
  1. 1.National Hellenic Research FoundationTheoretical and Physical Chemistry InstituteAthensGreece

Personalised recommendations