Advertisement

Applied Physics A

, 123:283 | Cite as

Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

  • Toshiaki Natsuki
  • Jun Natsuki
Article

Abstract

Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson’s ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets.

Keywords

Boron Nitride Representative Elementary Volume Graphene Nanosheets Boron Nitride Nanotubes Molecular Mechanic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)CrossRefGoogle Scholar
  3. 3.
    P. Russo, A. Hu, G. Compagnini, Nano Micro Lett. 5, 260 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Zhang, G. Lian, H. Si, J. Wang, X. Zhang, Q. Wang, D. Cui, J. Mater. Chem. A 1, 5105 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Mogharabi, M. Abdollahi, M.A. Faramarzi, DARU. J. Pharm. Sci. 22, 23 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Pakdel, C. Zhia, Y. Bandoa, D. Golberg, Materialstoday 15, 256 (2012)Google Scholar
  7. 7.
    A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Appl. Phys. Lett. 84, 2527 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scripta Mater. 44, 1561 (2001)CrossRefGoogle Scholar
  9. 9.
    Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Phys. Rev. B 69, 205415 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Chang, W.Q. Han, A. Zettl, Appl. Phys. Lett. 86, 173102 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Chen, J. Zou, S.J. Campbell, G.L. Caer, Appl. Phys. Lett. 84, 2430 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    X. Wang, C. Zhi, Q. Weng, Y. Bando, D. Golberg, J. Phys. Conf. Ser. 471, 012003 (2013)CrossRefGoogle Scholar
  14. 14.
    T. Natsuki Electronics 2015 4, 1 (2015)Google Scholar
  15. 15.
    T. Natsuki, N. Matsuyama, Q.-Q. Ni, Appl. Phys. A 120, 1309 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    L. Jin, L. Li, Electron Device Lett. IEEE 36, 68 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    T. Natsuki, K. Tantrakarn, M. Endo, Appl. Phys. A 79, 117 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T. Natsuki, M. Endo, Appl. Phys. A 80, 1468 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    G. Cao Polymers 2014 6, 2404 (2014)Google Scholar
  20. 20.
    J. Wu, B. Wang, Y. Wei, R. Yang, M. Dresselhaus, Mater. Res. Lett. 1, 200 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Li, T.W. Chou, J Nanosci Nanotechnol 6, 54 (2006)Google Scholar
  22. 22.
    E.S. Oh, Mater. Lett 64, 859 (2010)CrossRefGoogle Scholar
  23. 23.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. GoddardIII, W.M. Skiff, UFF. J. Am. Chem. Soc. 114, 10024 (1992)CrossRefGoogle Scholar
  24. 24.
    L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Nanotechnology 22, 1 (2011)CrossRefGoogle Scholar
  25. 25.
    L. Chkhartishvili, J. Phys. Conf. Ser. 176, 012014 (2009)CrossRefGoogle Scholar
  26. 26.
    O. Hod, J. Chem Theory Comput 8, 1360 (2012)CrossRefGoogle Scholar
  27. 27.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem 94, 8897 (1990)CrossRefGoogle Scholar
  28. 28.
    L. Jiang, W. Guo, J. Mech. Phys. Solids 59, 1204 (2011)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H. Zhao, K. Min, N.R. Aluru, Nano Lett. 9, 3012 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  2. 2.Institute of Carbon Science and TechnologyShinshu UniversityNaganoJapan

Personalised recommendations