Applied Physics A

, 123:286 | Cite as

Lattice location of implanted Co in heavily doped \(n^+\)- and \(p^+\)-type silicon

  • Daniel José da Silva
  • Ulrich Wahl
  • João Guilherme Correia
  • Lígia Marina Amorim
  • Manuel Ribeiro da Silva
  • Lino Miguel da Costa Pereira
  • João Pedro Araújo


We have studied the influence of electronic doping on the preferred lattice sites of implanted \({^{61}\text{Co}}\), and the related stabilities against thermal annealing, in silicon. Using the \(\beta ^-\) emission channeling technique we have identified Co on ideal substitutional (ideal S) sites, sites displaced from bond-centered towards substitutional (near-BC) sites and sites displaced from tetrahedral interstitial towards anti-bonding (near-T) sites. We show clearly that the fractions of Co on these lattice sites change with doping. While near-BC sites prevail in \(n^+\)-type Si, near-T sites are preferred in \(p^+\)-type Si. Less than \(\sim\)35% of Co occupies ideal S sites in both types of heavily doped silicon, showing that the majority of implanted Co forms complex defect structures. Implantation-induced defects seem to getter more efficiently Co in lightly doped n-type than in heavily doped \(n^+\)- or \(p^+\)-type silicon. The formation of CoB pairs in \(p^+\)-type silicon and its possible influence on the lattice sites is discussed.


Lattice Site Emission Yield Doping Type Type Silicon Deep Acceptor Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by FCT-Portugal, project CERN/FIS-NUC/0004/2015, and by the European Union FP7-through ENSAR, contract 262010. Project Norte-070124-FEDER-000070, Fund for Scientific Research-Flanders and the KU Leuven BOF (CREA/14/013 and STRT/14/002) are acknowledged. D.J. Silva is thankful for FCT Grant SFRH/BD/69435/2010.


  1. 1.
    S.M. Myers, M. Seibt, W. Schröter, J. Appl. Phys. 88, 3795 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    S. Pizzini, Sol. Energy Mater. Sol. Cells 94, 1528 (2010)CrossRefGoogle Scholar
  3. 3.
    E.R. Weber, Appl. Phys. A 30, 1 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    H. Lemke, K. Irmscher, ECS Trans. 3, 299 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Scheffler, V. Kolkovsky, J. Weber, J. Appl. Phys. 113, 183714 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    K. Matsukawa, K. Shirai, H. Yamaguchi, H. Katayama-Yoshida, Phys. B Condens. Matter 401, 151 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Istratov, E.R. Weber, Appl. Phys. A 66, 123 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, M.R. da Silva, J.P. Araújo, Semicond. Sci. Technol. 29, 125006 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Z.Z. Zhang, B. Partoens, K. Chang, F.M. Peeters, Phys. Rev. B 77, 155201 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    P.R. Banduru, J. Park, J.S. Lee, Appl. Phys. Lett. 89, 112502 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    V.N. Fedosseev, L.E. Berg, N. Lebas, O.J. Launila, M. Lindroos, R. Losito, B.A. Marsh, F.K. Österdahl, T. Pauchard, G. Tranströmer, J. Vannesjö, Nucl. Instrum. Methods Phys. Res. B 266(19), 4378 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    U. Wahl, J.G. Correia, S. Cardoso, J.G. Marques, A. Vantomme, G. Langouche, Nucl. Instrum. Methods. Phys. Res. Sect. B 136, 744 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M.R. da Silva, U. Wahl, J.G. Correia, L.M. Amorim, L.M.C. Pereira, Rev. Sci. Instrum. 84, 073506 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H. Bubert, L. Palmetshofer, G. Stingeder, M. Wielunski, Anal. Chem. 1001, 1562 (1991)CrossRefGoogle Scholar
  15. 15.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Silva, U. Wahl, J.G. Correia, J.P. Araújo, J. Appl. Phys. 114, 103503 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, E. Bosne, M.R. da Silva, J.P. Araújo, J. Appl. Phys. 115, 023504 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J.L. Benton, T. Boone, D.C. Jacobson, P.J. Silverman, J.M. Rosamilia, C.S. Rafferty, S. Weinzierl, B. Vub, J. Electrochem. Soc. 148, G326 (2001)CrossRefGoogle Scholar
  19. 19.
    U. Wahl, A. Vantomme, G. Langouche, J.P. Araújo, L. Peralta, J.G. Correia, Appl. Phys. Lett. 77, 2142 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Silva, U. Wahl, J.G. Correia, L.M. Amorim, S. Decoster, M.R. da Silva, L.M.C. Pereira, J.P. Araújo, Appl. Phys. A 122, 241 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    D. Gilles, W. Schröter, W. Bergholz, Phys. Rev. B 41, 5770 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    N. Pic, A. Danel, M.L. Polignano, G. Salva, M. Sardo, S. Rey, Solid State Phenom. 59–60, 373 (2004)CrossRefGoogle Scholar
  23. 23.
    M.L. Polignano, D. Caputo, D. Codegoni, V. Privitera, M. Riva, Solid State Phenom. 108–109, 571 (2005)CrossRefGoogle Scholar
  24. 24.
    R. Czaputa, H. Feichtinger, J. Oswald, Sol. State Comm. 47, 223 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    H. Nakashima, K. Hashimoto, J. Appl. Phys. 69, 1440 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniel José da Silva
    • 1
    • 2
  • Ulrich Wahl
    • 3
  • João Guilherme Correia
    • 3
  • Lígia Marina Amorim
    • 2
  • Manuel Ribeiro da Silva
    • 4
  • Lino Miguel da Costa Pereira
    • 2
  • João Pedro Araújo
    • 1
  1. 1.IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia da Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.KU LeuvenInstituut voor Kern- en StralingsfysicaLeuvenBelgium
  3. 3.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  4. 4.Centro de Física Nuclear da Universidade de LisboaLisboaPortugal

Personalised recommendations