Advertisement

Applied Physics A

, 123:182 | Cite as

Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers

  • Rahul Sahay
  • Avinash BajiEmail author
  • Hashina Parveen
  • Anupama Sargur Ranganath
Article

Abstract

Here, we combine electrospinning and replica-molding to produce hierarchical poly(methyl methacrylate) structures and investigate its adhesion behavior. Normal and shear adhesion of these biomimetic hierarchical structures was measured using nanoindentaton and a custom-built apparatus attached to Zwick tensile testing machine, respectively. Shear adhesion was measured by sliding the samples along the glass slide under a predefined normal preload. Normal adhesion was measured by indenting the surface of the sample with the help of a diamond indenter tip and retracting it back to determine the pull-off force needed to detach it from the sample. These experiments were also conducted on neat PMMA fibers to investigate the effect of hierarchy on the adhesion performance of the samples. Our results show that the shear adhesion strength and pull-off forces recorded for the hierarchical samples are higher than those recorded for neat fibers.

Keywords

PMMA Anodize Aluminum Oxide Indentation Depth Anodize Aluminum Oxide Template Normal Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the support of SUTD-MIT International Design Centre (Project No. IDG31400101).

References

  1. 1.
    M.P. Murphy, Biologically-inspired synthetic dry adhesives for wall-climbing robots (Carnegie Mellon University, 2008)Google Scholar
  2. 2.
    P. Flammang, N. Aldred, R. Santos, S. Gorb, Biological and biomimetic adhesives: challenges and opportunities. R. Soc. Chem. (2013)Google Scholar
  3. 3.
    M.S. Prowse, M. Wilkinson, J.B. Puthoff, G. Mayer, K. Autumn, Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7(2), 733–738 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Huber, S.N. Gorb, N. Hosoda, R. Spolenak, E. Arzt, Influence of surface roughness on gecko adhesion. Acta Biomater. 3, 607–610 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Autumn, S. Hsieh, D. Dudek, J. Chen, C. Chitaphan, R.J. Full, Dynamics of geckos running vertically. J. Exp. Biol. 209(2), 260–272 (2006)CrossRefGoogle Scholar
  6. 6.
    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot–hair. Nature 405(6787), 681–685 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    K. Autumn, C. Majidi, R.E. Groff, A. Dittmore, R. Fearing, Effective elastic modulus of isolated gecko setal arrays. J. Exp. Biol. 209(18), 3558–3568 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Autumn, A. M. Peattie, Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42(6), 1081–1090 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. 99(19), 12252–12256 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    R. Sahay, H.Y. Low, A. Baji, S. Foong, K.L. Wood, A state-of-the-art review and analysis on the design of dry adhesion materials for applications such as climbing micro-robots. RSC Adv. 5(63), 50821–50832 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Ko, Z.X. Zhang, J.C. Ho, K. Takei, R. Kapadia, Y.L. Chueh, W.Z. Cao, B.A. Cruden, A. Javey, Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 6(1), 22–26 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Yoon, H. E. Jeong, T.-i. Kim, T. J. Kang, D. Tahk, K. Char, K. Y. Suh, Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 4(4), 335–346 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Menon, M. Murphy, M. Sitti, Gecko inspired surface climbing robots. IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenyang (2004)CrossRefGoogle Scholar
  14. 14.
    A. Parness, D. Soto, N. Esparza, N. Gravish, M. Wilkinson, K. Autumn, M. Cutkosky, A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J. R. Soc. Interface 6(41), 1223–1232 (2009)CrossRefGoogle Scholar
  15. 15.
    M. P. Murphy, B. Aksak, M. Sitti, Gecko-inspired directional and controllable adhesion. Small 5(2), 170–175 (2009)CrossRefGoogle Scholar
  16. 16.
    L.F. Boesel, C. Greiner, E. Arzt, A. del Campo, Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22(19), 2125–2137 (2010)CrossRefGoogle Scholar
  17. 17.
    C.E. Brubaker, P.B. Messersmith, Polymer science: a comprehensive reference. In: K. Matyjaszewski, M. Möller (eds) (Elsevier, Amsterdam, 2012)Google Scholar
  18. 18.
    A. del Campo, C. Greiner, I. Álvarez, E. Arzt, Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 19(15), 1973–1977 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899), 238–242 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    B. Aksak, M. P. Murphy, M. Sitti, Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces, IEEE International Conference on Robotics and Automation, ICRA 2008, pp 3058 (2008)Google Scholar
  21. 21.
    M. P. Murphy, S. Kim, M. Sitti, Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 1(4), 849–855 (2009).CrossRefGoogle Scholar
  22. 22.
    H. Gao, H. Yao, Proc. Natl. Acad. Sci. USA 101(21), 7851–7856 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    H. Yao, H. Gao, Mechanics of robust and releasable adhesion in biology: bottom–up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54(6), 1120–1146 (2006)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Baji, L. Zhou, Y.-W. Mai, Z. Yang, H. Yao, On the adhesion performance of a single electrospun fiber. Appl. Phys. A 118(1), 51–56 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.L. Yarin, W. Kataphinan, D.H. Reneker, Branching in electrospinning of nanofibers. J. Appl. Phys. 98(6), 06450 (2005)CrossRefGoogle Scholar
  26. 26.
    A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 90(9), 4836–4846 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89(5), 3018–3026 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    R. Sahay, C. Teo, Y. Chew, New correlation formulae for the straight section of the electrospun jet from a polymer drop. J. Fluid Mech. 735, 150–175 (2013)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    R. Sahay, H.P.A.S. Ranganath, V.A. Ganesh, A. Baji, On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Adv. 6(53), 47883–47889 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Martín, C. Mijangos, Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25(2), 1181–1187 (2009)CrossRefGoogle Scholar
  31. 31.
    J.-T Chen, W.-L Chen, P.-W Fan, Hierarchical structures by wetting porous templates with electrospun polymer fibers. ACS Macro Lett. 1(1), 41–46 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    G. Cao, D. Liu, Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv Colloid Interface Sci. 136(1), 45–64 (2008)CrossRefGoogle Scholar
  33. 33.
    I. Rodriguez, C.T. Lim, S. Natarajan, A.Y.Y. Ho, E.L. Van, N. Elmouelhi, H.Y. Low, M. Vyakarnam, K. Cooper, Shear adhesion strength of gecko inspired tapes on surfaces with variable roughness. J. Adhes. 89, 921–936 (2013)CrossRefGoogle Scholar
  34. 34.
    A.Y.Y. Ho, L.P. Yeo, Y.C. Lam, I. Rodríguez, Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano 5(3), 1897–1906 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Kim, M. Sitti, Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89(26), 261911 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    M. Röhrig, Fabrication and analysis of bio-inspired smart surfaces. (KIT Scientific Publishing, Germany, 2013)Google Scholar
  37. 37.
    A.G. Gillies, R.S. Fearing, Shear adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits. Langmuir 27(18), 11278–11281 (2011)CrossRefGoogle Scholar
  38. 38.
    M.T. Northen, K.L. Turner, A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8), 1159 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J. Lee, Biologically inspired synthetic gecko adhesive from hard polymer microfiber arrays (University of California, Berkeley, 2008)Google Scholar
  40. 40.
    A. Peressadko, S.N. Gorb, When less is more: experimental evidence for tenacity enhancement by division of contact area. J. Adhes. 80(4), 247–261 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4(13), 271–275 (2007)CrossRefGoogle Scholar
  42. 42.
    T.W. Kim, B. Bhushan, The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 5(20), 319–327 (2008)CrossRefGoogle Scholar
  43. 43.
    B. Chen, P. Goldberg Oppenheimer, T.A.V. Shean, C.T. Wirth, S., J. Hofmann, Robertson, Adhesive properties of gecko-inspired mimetic via micropatterned carbon nanotube forests. J. Phys. Chem. C 116(37), 20047–20053 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Greiner, E. Arzt, A. del Campo, Hierarchical Gecko-like adhesives. Adv. Mater. 21(4), 479–482 (2009)CrossRefGoogle Scholar
  45. 45.
    C. Greiner, A. del Campo, E. Arzt, Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23(7), 3495–3502 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rahul Sahay
    • 1
  • Avinash Baji
    • 1
    Email author
  • Hashina Parveen
    • 1
  • Anupama Sargur Ranganath
    • 1
  1. 1.Division of Engineering Product DevelopmentSingapore University of Technology and Design, (SUTD)SingaporeSingapore

Personalised recommendations