Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO2 thin films
- 172 Downloads
- 5 Citations
Abstract
The effect of shift heavy ion irradiations on the structural and optical properties of 6 % Sb-doped SnO2 thin films deposited on quartz substrate by electron beam evaporation technique is presented. Two ion species Ni and Au with energy 120 MeV and fluence of 1 × 1013 ion/cm2 were used. These films were characterized by X-ray diffraction, atomic force microscope, UV–visible and micro-Raman spectroscopy. From structural analysis, these films exhibit tetragonal rutile structure and retain it even after irradiation. The ion irradiations have shown improvement in the structural properties, such as increase in grain size and decrease in the lattice strain. Raman study also indicates enhancement in quality of crystal structure after irradiations. The grain growth after ion interaction is also observed by atomic force microscope study. Further, a variation in optical band gap and reduction in disorder is observed after irradiation. Other parameters such as Urbach tails energy and steepness parameter are obtained from optical data. The overall observed physical properties show a significant improvement after irradiation. A good correspondence between structures with its various properties can be seen.
Notes
Acknowledgments
Author K. M. Batoo is thankful to the King Abdul Aziz City of Science and Technology for providing the financial support under the project Code: MP-32-35. Author F. A. Mir would also like to thank University Grants Commission (UGC) for awarding the UGC-Dr. D. S. Kothari Postdoctoral Fellowship. Authors are thankful to the director and scientific staff of IUAC New Delhi for providing beam time facility.
References
- 1.D.L. Hall, A.A. Wang, K.T. Joy, T.A. Miller, M.S. Wooldridge, J. Am. Ceram. Soc. 87, 2033 (2004)CrossRefGoogle Scholar
- 2.B. Grzeta, E. Tkalcec, C. Goebbert, M. Takeda, M. Takahashi, K. Nomura, M. Jaksic, J. Phys. Chem. Solids 63, 765 (2002)ADSCrossRefGoogle Scholar
- 3.B. Yoo, K. Kim, S.H. Lee, W.M. Kim, N.G. Park, Sol. Energy Mater. Sol. Cells 92, 873 (2008)CrossRefGoogle Scholar
- 4.T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S.J. Santucci, Phys. Chem. Solids 70, 993 (2009)ADSCrossRefGoogle Scholar
- 5.X.D. Xiao, G.P. Dong, J.D. Shao, H.B. He, Z.X. Fan, Appl. Surf. Sci. 256, 1636 (2010)ADSCrossRefGoogle Scholar
- 6.X.J. Feng, J. Ma, F. Yang, F. Ji, F.J. Zong, C. Luan, H.L. Ma, Appl. Surf. Sci. 254, 6601 (2008)ADSCrossRefGoogle Scholar
- 7.S.Y. Lee, B.O. Park, Thin Solid Films 510, 154 (2006)ADSCrossRefGoogle Scholar
- 8.J.H. Lee, Thin Solid Films 516, 1386 (2008)ADSCrossRefGoogle Scholar
- 9.J.K. Suna, B.V. Velamakannib, W.W. Gerbericha, L.F.J. Francis, J. Colloid Interface Sci. 280, 387 (2004)CrossRefGoogle Scholar
- 10.D.K. Avasthi, G.K. Mehta, Swift heavy ions for materials engineering and nanostructuring (Springer, Dordrecht, 2011)CrossRefGoogle Scholar
- 11.D. Kanjilal, Curr. Sci. 80, 1560 (2001)Google Scholar
- 12.T. Mohanty, P.V. Satyam, D. Kanjilal, J. Nanosci. Nanotechnol. 6, 2554 (2006)CrossRefGoogle Scholar
- 13.S. Rani, Somnath, C. Roy, N.K. Puri, M.C. Bhatnagar, D. Kanjilal, J. Nanomater. Article ID 395490 (2008)Google Scholar
- 14.N.G. Deshpande, R. Sharma, Curr. Appl. Phys. 8, 181 (2008)ADSCrossRefGoogle Scholar
- 15.K.M. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, D. Kanjilal, K. Asokan, Vacuum 90, 39 (2013)ADSCrossRefGoogle Scholar
- 16.A. Sharma, K.D. Verma, M. Varshney, D. Singh, M. Singh, K. Asokan, R. Kumar, Radiat. Eff. Defects Solids 165(12), 930 (2010)CrossRefGoogle Scholar
- 17.Ziegler JF, Biersack JP, Littmark U. The stopping range of ions in solids (Tarrytown: Pergamon) (1985); Ziegler JF (2006) http://www.srim.org
- 18.H. Kim, A. Pique, Appl. Phys. Lett. 84, 218 (2004)ADSCrossRefGoogle Scholar
- 19.C. Terrier, J.P. Chatelon, J.A. Roger, R. Berjoan, C.J. Dubois, Sol-Gel Sci. Technol. 10, 75–81 (1997)CrossRefGoogle Scholar
- 20.C. Terrier, J.P. Chatelon, R. Berjoan, J.A. Roger, Thin Solid Films 263, 37–41 (1995)ADSCrossRefGoogle Scholar
- 21.Feroz A. Mir, Khalid M. Batoo, Indrajeet Chatterjee, G. M. Bhat, J. Mater Sci. Mater Electron. 25:1564–1570 (2014)Google Scholar
- 22.B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Massachusetts, 1978)MATHGoogle Scholar
- 23.F.A. Mir, M. Ikram, R. Kumar, Appl. Radiat. Isot. 70, 2409–2415 (2012)CrossRefGoogle Scholar
- 24.F.A. Mir, Phil. Mag. 94(3), 331–344 (2014)ADSCrossRefGoogle Scholar
- 25.A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2002)CrossRefGoogle Scholar
- 26.J. Zuo, C. Xu, X. Liu, C. Wanga, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75(3), 1835 (1994)ADSCrossRefGoogle Scholar
- 27.Die´guez A, Romano-Rodriguez A, Morante J, Weimar U, Schweizer-Berberich M, Göpel W (1996) Sens Actuators B 31:1Google Scholar
- 28.M. Batzill, U. Diebold, Progr Surf Sci 79, 47 (2005)ADSCrossRefGoogle Scholar
- 29.O. Lupan, L. Chow, G. Chaic, A. Schulte, S. Park, H. Heinrich, Mater. Sci. Eng., B 157, 101 (2009)CrossRefGoogle Scholar
- 30.N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Clarendon Press, Oxford, 1979)Google Scholar
- 31.J.L. Jacquemin, G. Brodure, J. Phys. Chem. Solids 12, 4767 (1979)Google Scholar
- 32.C. Kilic, A. Zunger, Origin of coexistence of conductivity and transperancy in SnO2. Phys. Rev. Lett. 88, 095501 (2002)ADSCrossRefGoogle Scholar
- 33.K.L. Narayanan, K.P. Vijayakumar, K.G.M. Nair, N.S. Thampi, Phys. B 240, 8 (1997)ADSCrossRefGoogle Scholar
- 34.B. Alterkop, N. Parkansky, S. Goldsmith, R.L. Boxman, Appl. Phys. A 36, 552 (2003)Google Scholar
- 35.K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Appl. Phys. Lett. 95, 031901 (2009)ADSCrossRefGoogle Scholar
- 36.H. Mahr, Phys. Rev. 125, 1510 (1962)ADSCrossRefGoogle Scholar