Advertisement

Applied Physics A

, 122:359 | Cite as

Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

  • Albert JumaEmail author
  • Ilona Oja Acik
  • Arvo Mere
  • Malle Krunks
Article
Part of the following topical collections:
  1. Smart Materials and Structures

Abstract

The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal–oxide–semiconductor (MOS) configuration using current–voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current–voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child’s law dominated for bias voltages above 0.12 V.

Keywords

TiO2 Rutile Leakage Current TiO2 Film Conduction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Estonian Ministry of Education and Research under target financing project IUT19-4, TUT base Financing Project B24 and by the European Union through the European Regional Development Fund Projects: TK114 “Mesosystems: Theory and Applications” (3.2.0101.11-0029). Senior Researcher V. Mikli is appreciated for the SEM measurements.

References

  1. 1.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    B. Pedro, M. Rodrigo, P. Lui, F. Elvira, Transparent Oxide Electronics: From Materials to Devices (Wiley, Chichester, 2012)Google Scholar
  3. 3.
    M.C. Sekhar, P. Kondaiah, G.M. Rao, S.V.J. Chandra, S. Uthanna, Superlattices Microstruct. 62, 68 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    R. Sing, R. Paily, A. DasGupta, N. DasGupta, P. Misra, L.M. Kukreja, Semicond. Sci. Technol. 20, 38 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    W. Yang, J. Marino, A. Monson, C.A. Wolden, Semicond. Sci. Technol. 21, 1573 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    L.H. Chong, K. Mallik, C.H. de Groot, R. Kersting, J. Phys.: Condens. Matter 18, 645 (2006)ADSGoogle Scholar
  7. 7.
    H. Xue, W. Chen, C. Liu, X. Kong, P. Qu, Z. Liu, J. Zhou, L. Shen, Z. Zhong, S. Ruan, in Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems Sanya, China 108 (2008)Google Scholar
  8. 8.
    J.C. Tinoco, M. Estrada, B. In˜iguez, A. Cerdeira, Microelectron. Reliab. 48, 370 (2008)CrossRefGoogle Scholar
  9. 9.
    P. Walke, R. Bouregba, A. Lefevre, G. Parat, F. Lallemand, F. Voiron, B. Mercey, U. Lüders, J. Appl. Phys. 115, 094103 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M.-K. Lee, J.-J. Huang, T.-S. Wu, Semicond. Sci. Technol. 20, 519 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Chakraborty, M.K. Bera, S. Bhattacharya, C.K. Maiti, Current conduction mechanism in TiO2 gate dielectrics. Microelectron. Eng. 81, 188 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Bengi, U. Aydemir, S. Altındal, Y. Ozen, S. Ozcelik, J. Alloys Compd. 505, 628 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Mardare, G.I. Rusu, J. Non Cryst. Solids 356, 1395 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kim, H.Y. Jeong, S.-Y. Choi, Y.-K. Choi, Appl. Phys. Lett. 97, 033508 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, Y.-K. Choi, IEEE 29, 331 (2008)Google Scholar
  17. 17.
    P.H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S.A. Haque, T.D. Anthopoulos, Appl. Phys. Lett. 96, 082116 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Curr. Appl. Phys. 12, 422 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Es-Souni, I. Oja, M. Krunks, J. Mater. Sci.: Mater. Electron. 15, 341 (2004)Google Scholar
  20. 20.
    N.R. Mathews, E.R. Morales, M.A. Corte´s-Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    C.H. Chen, E.M. Kelder, J. Schoonman, Thin Solid Films 342, 35 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A. O. Juma, I. Oja Acik, V. Mikli, A. Mere, M. Krunks, in Thin Solid Films (2015) in pressGoogle Scholar
  24. 24.
    A. Oja, M. Mere, C.-H. Krunks, M. Solterbeck, Es-Souni. Solid State Phenom. 99–100, 259 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Cui, J. Sun, Z. Hu, W. Yu, N. Xu, N. Xu, Z. Ying, J. Wu, Surf. Coat. Technol. 231, 180 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Thin Solid Films 300, 113 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    E. Barsoukov, J.R. McDonald, Impedance Spectroscopy, Theory: Experiments and Applications (Wiley, Hoboken, NJ, 2005)CrossRefGoogle Scholar
  28. 28.
    J.Y. Kim, H.S. Jung, J.H. No, J.-R. Kim, K.S. Hong, J. Electroceramics 16, 447 (2006)CrossRefGoogle Scholar
  29. 29.
    G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Express Polym. Lett. 1, 781 (2007)CrossRefGoogle Scholar
  30. 30.
    K. Vydianathan, G. Nuesca, G. Peterson, E.T. Eisenbraun, A.E. Kaloyeros, J.J. Sullivan, B. Han, J. Mater. Res. 16, 1838 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Parker, J.S. Wasilik, Phys. Rev. 120, 1631 (1960)ADSCrossRefGoogle Scholar
  32. 32.
    J.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    K. Funke, R.D. Banhatti, Solid State Sci. 10, 790–803 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A.A.A. Youssef, Z. Naturforsch. 57a, 263–269 (2002)ADSGoogle Scholar
  35. 35.
    C. Cramer, K. Funke, T. Saatkamp, D. Wilmer, M.D. Ingram, Z. Naturforsch. 50a, 613–623 (1995)ADSGoogle Scholar
  36. 36.
    S.C. Sun, T.F. Chen,   IEDM '94. Technical Digest: International Electron Devices Meeting, 1994 (IEEE, San Francisco, CA, 1994), pp. 333–336 Google Scholar
  37. 37.
    F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, ID 578168 (2014)Google Scholar
  38. 38.
    F.-C. Chiu, H.-W. Chou, J.Y.-M. Lee, J. Appl. Phys. 97, 103503 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic press, NY, 1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Albert Juma
    • 1
    • 2
    Email author
  • Ilona Oja Acik
    • 1
  • Arvo Mere
    • 1
  • Malle Krunks
    • 1
  1. 1.Laboratory of Thin Film Chemical Technologies, Department of Materials ScienceTallinn University of TechnologyTallinnEstonia
  2. 2.Department of Physics and AstronomyBotswana International University of Science and TechnologyPalapyeBotswana

Personalised recommendations