Applied Physics A

, 122:367 | Cite as

Activation energies for phase transformations in electrospun titania nanofibers: comparing the influence of argon and air atmospheres

  • H. Albetran
  • B. H. O’Connor
  • I. M. Low


This paper reports on titania absolute phase level (amorphous, anatase, and rutile forms) changes in electrospun amorphous titania nanofibers from 25 to 900 °C in air and argon atmospheres. A novel method was developed to extract absolute levels of amorphous titania and crystalline anatase and rutile from the synchrotron radiation diffraction (SRD) data. This is a sequel to a relative phase concentrations study that has been reported previously by Albetran et al. (Appl Phys A 116:161 [2014]). Determination of absolute phase levels facilitated estimation of the activation energies for the amorphous-to-anatase transformation of 45(9) kJ/mol in argon and 69(17) in air, and for the anatase-to-rutile transformation energies of 97(7) kJ/mol for argon and 129(5) for air. An activation energy estimate for amorphous-to-crystalline titania in argon of 142(21) kJ/mol, achieved using differential scanning calorimetry (DSC), is consistent with the SRD results. The differences in phase transition and activation energies when the titania nanofibers are heated in argon is attributed to the presence of substantial oxygen vacancies in anatase. Estimates of anatase and rutile oxygen site occupancies from the SRD data show that anatase has discernible oxygen vacancies in argon, which correspond to stoichiometric TiO2−x with x < 0.4 that the anatase stoichiometry in air is TiO2. Rutile does not have significant oxygen vacancies in either argon or air.


Differential Scanning Calorimetry Rutile Oxygen Vacancy Differential Scanning Calorimetry Data Argon Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The SRD work is supported financially by the Australian Synchrotron (Powder Diffraction Beamline) (AS122/PDFI/5075). The authors thank Dr. J. Kimpton at the Australian Synchrotron for guidance on use of the instrumentation at the Powder Diffraction Beamline; and at Curtin University to Dr. Y. Dong for the use of his electrospinning equipment, to Ms. E. Miller for assistance with FESEM, to Dr. X. Wang for assistance with TEM, and to Prof. M. Tade, Ms. K. Haynes, and Mr. A. Chan for TGA support.


  1. 1.
    H. Albetran, H. Haroosh, Y. Dong, V.M. Prida, B.H. O’Connor, I.M. Low, Appl. Phys. A 116, 161 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    H.C. Liang, X.Z. Li, J. Hazard. Mater. 162, 1415 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, J. Phys. Chem. B 110, 18492 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Jantawasu, T. Sreethawong, S. Chavadej, Chem. Eng. J. 155, 223 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Mishra, P.K. Shukla, A.K. Singh, O.N. Srivastava, Int. J. Hydrogen Energy 28, 1089 (2003)Google Scholar
  6. 6.
    C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Electrochem. Commun. 8, 1650 (2006)CrossRefGoogle Scholar
  7. 7.
    D. Wu, M. Long, ACS Appl. Mater. Interfaces 3, 4770 (2011)CrossRefGoogle Scholar
  8. 8.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    I.M. Low, H. Albetran, V.D.L. Prida, P. Manurung, M. Ionescu, Dev. Strateg. Mater. Comput. Des. III, 149 (2012)Google Scholar
  10. 10.
    I.M. Low, B. Curtain, M. Philipps, Z.Q. Liu, M. Ionescu, J. Aust. Ceram. Soc. 48, 198 (2012)Google Scholar
  11. 11.
    D. Fang, Z. Luob, K. Huanga, D.C. Lagoudas, Appl. Surf. Sci. 257, 6451 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F. Gennari, D. Pasquevich, J. Mater. Sci. 33, 1571 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhang, J.F. Banfield, Chem. Mater. 17, 3421 (2005)CrossRefGoogle Scholar
  14. 14.
    R. Liu, L.S. Qiang, W.D. Yang, H.Y. Liu, Mater. Res. Bull. 48, 1458 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, K.J.D. MacKenzie, J. Am. Ceram. Soc. 84, 1591 (2001)CrossRefGoogle Scholar
  16. 16.
    X.Z. Ding, X.H. Liu, Y.Z. He, J. Mater. Sci. Lett. 15, 1789 (1996)CrossRefGoogle Scholar
  17. 17.
    M. Barakat, G. Hayes, S.I. Shah, J. Nanosci. Nanotechnol. 5, 759 (2005)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, J.F. Banfield, J. Mater. Res. 15, 437 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)CrossRefGoogle Scholar
  20. 20.
    R.A. Eppler, J. Am. Ceram. Soc. 70, 64 (1987)CrossRefGoogle Scholar
  21. 21.
    M.K. Akhtar, S.E. Pratsinis, S.V. Mastrangelo, J. Am. Ceram. Soc. 75, 3408 (1992)CrossRefGoogle Scholar
  22. 22.
    J.H. Huang, M.S. Wong, Thin Solid Films 520, 1379 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Gamboa, D.M. Pasquevich, J. Am. Ceram. Soc. 75, 2934 (1992)CrossRefGoogle Scholar
  24. 24.
    R. Plugaru, A. Cremades, J. Piqueras, J. Phys. Condens. Matter 16, 261 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, J. Mater. Res. 18, 156 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Nanoscale 5, 3601 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    I.M. Low, H. Albetran, V.M. Prida, V. Vega, P. Manurung, M. Ionescu, J. Mater. Res. 28, 304 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, ACS Appl. Mater. Interfaces 4, 3944 (2012)CrossRefGoogle Scholar
  29. 29.
    B.C. Kang, S.B. Lee, J.H. Boo, Surf. Coat. Technol. 131, 88 (2000)CrossRefGoogle Scholar
  30. 30.
    S. Shang, X. Jiao, D. Chen, ACS Appl. Mater. Interfaces 4, 860 (2012)CrossRefGoogle Scholar
  31. 31.
    I.M. Low, F.K. Yam, W.K. Pang, Mater. Lett. 87, 150 (2012)CrossRefGoogle Scholar
  32. 32.
    S.W. Hsu, T.S. Yang, T.K. Chen, M.S. Wong, Thin Solid Films 515, 3521 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    F. Dong, W. Zhao, Z. Wu, Nanotechnology 19, 365607 (2008)CrossRefGoogle Scholar
  34. 34.
    J.Y. Park, J.J. Yun, C.H. Hwang, I.H. Lee, Mater. Lett. 64, 2692 (2010)CrossRefGoogle Scholar
  35. 35.
    Q. Li, D.J.G. Satur, H. Kim, H.G. Kim, Mater. Lett. 76, 169 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Matusita, T. Komatsu, R. Yokota, J. Mater. Sci. 19, 291 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    H. Albetran, V.M. Prida, B.H. O’Connor, I.M. Low, Appl. Phys. A 120, 623 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    N.P. Bansal, R.H. Doremus, A.J. Bruce, C.T. Moynihan, J. Am. Ceram. Soc. 66, 233 (1983)CrossRefGoogle Scholar
  39. 39.
    B.J. Morgan, G.W. Watson, J. Phys. Chem. C 114, 2321 (2010)CrossRefGoogle Scholar
  40. 40.
    D.A. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    K.N. Kumar, J. Engell, J. Kumar, K. Keizer, T. Okubo, M. Sadakata, J. Mater. Sci. Lett. 14, 1784 (1995)CrossRefGoogle Scholar
  42. 42.
    K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993)CrossRefGoogle Scholar
  43. 43.
    K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 1141 (1993)CrossRefGoogle Scholar
  44. 44.
    H. Albetran, Y. Dong, I.M. Low, J. Asian Ceram. Soc. JASCER 161, 292 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Imaging and Applied PhysicsCurtin UniversityPerthAustralia
  2. 2.John de Laeter CentreCurtin UniversityPerthAustralia
  3. 3.Department of Basic Sciences, College of EducationUniversity of DammamDammamSaudi Arabia

Personalised recommendations