Applied Physics A

, 122:393 | Cite as

Influence of the content on properties of microwave-exfoliated graphite oxide and Ni(OH)2 composites

  • Y. M. Shulga
  • S. A. Baskakov
  • Y. V. Baskakova
  • N. Y. Shulga
  • E. A. Skryleva
  • Y. N. Parkhomenko
  • A. G. Krivenko
  • K. G. Belay
  • G. L. GutsevEmail author


Composites of Ni(OH)2 and microwave-exfoliated graphite oxide (MEGO) with component ratios of 20:80, 35:65, and 50:50 have been synthesized by treating a water mixture of MEGO with NiSO4 × 7H2O in a KOH solution. The structure and properties of the composites obtained have been studied using IR spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. MEGO is known to possess high stability during the charge–discharge process and relatively low specific capacitance. On the contrary, Ni(OH)2 possesses a high specific capacitance and a low stability during the charge–discharge process. Our experimental results show that the addition of MEGO to Ni(OH)2 increases the stability of the composite electrode under a charge–discharge process. Some increase in the specific capacitance during the cycling have been observed for the composites with the 35:65 and 50:50 ratios. Moreover, the specific capacitance of the 35:65 composite matches the specific capacitance of pure Ni(OH)2 after 100 cycles.


Specific Capacitance RuO2 High Specific Capacitance Porous Electrode NiSO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially supported by the RF Ministry of Education and Science (State Assignment No. 11.1797.2014/K). The work was and performed by using the equipment of the Joint Research Center “Material Science and Metallurgy” at the National University of Science and Technology “MISIS” (project ID: RFMEFI59414X0007).


  1. 1.
    A. Burke, J. Power Sources 91, 37 (2000)CrossRefADSGoogle Scholar
  2. 2.
    H. Pan, J. Li, Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010)CrossRefADSGoogle Scholar
  3. 3.
    Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)CrossRefADSGoogle Scholar
  5. 5.
    J. Huang, P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li, G. Wang, J. Power Sources 246, 371 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Frackowiak, F. Beguin, Carbon 39, 937 (2001)CrossRefGoogle Scholar
  7. 7.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefADSGoogle Scholar
  8. 8.
    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)CrossRefGoogle Scholar
  9. 9.
    C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011)CrossRefADSGoogle Scholar
  10. 10.
    J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)CrossRefGoogle Scholar
  11. 11.
    M.S. Wu, C.M. Huang, Y.Y. Wang, C.C. Wan, Electrochim. Acta 44, 4007 (1999)CrossRefGoogle Scholar
  12. 12.
    E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, J. Power Sources 92, 163 (2001)CrossRefADSGoogle Scholar
  13. 13.
    D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Electrochem. Commun. 9, 869 (2007)CrossRefGoogle Scholar
  14. 14.
    H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818 (2011)CrossRefGoogle Scholar
  15. 15.
    G.-W. Yang, C.-L. Xu, H.-L. Li, Chem. Commun. 10, 6537 (2008)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Luo, G.H. Li, G.T. Duan, L.D. Zhang, Nanotechnology 17, 4278 (2006)CrossRefADSGoogle Scholar
  17. 17.
    G. Duan, W. Cai, Y. Luo, F. Sun, Adv. Funct. Mater. 17, 644 (2007)CrossRefGoogle Scholar
  18. 18.
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)CrossRefGoogle Scholar
  19. 19.
    H.Q. Cao, H. Zheng, K.Y. Liu, J.H. Warner, Chem. Phys. Chem. 11, 489 (2010)Google Scholar
  20. 20.
    J. Chang, M. Park, D. Ham, S.B. Ogale, R.S. Mane, S.-H. Han, Electrochim. Acta 53, 5016 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Tian, J. Yan, L. Huang, R. Xue, L. Hao, B. Yi, Mater. Chem. Phys. 143, 1164 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Qin, X. Li, L. Yang, Z. Wang, B. Zheng, H. Yuan, D. Xiao, J. Alloys Compd. 610, 549 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, S. Gai, C. Li, F. He, M. Zhang, Y. Yan, P. Yang, Electrochim. Acta 90, 673 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.M. Shulga, S.A. Baskakov, E.I. Knerelman, G.I. Davidova, E.R. Badamshina, N.Y. Shulga, E.A. Skryleva, A.L. Agapov, D.N. Voylov, A.P. Sokolov, V.M. Martynenko, RSC Adv. 4, 587 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.M. Shulga, A.S. Lobach, S.A. Baskakov et al., High Energy Chem. 47, 331 (2013)CrossRefGoogle Scholar
  27. 27.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  28. 28.
    C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981)CrossRefGoogle Scholar
  29. 29.
    S. Sarkar, M. Pradhan, A.K. Sinha, M. Basu, Y. Negishi, T. Pal, Inorg. Chem. 49, 8813 (2010)CrossRefGoogle Scholar
  30. 30.
    M.B.J.G. Freitas, J. Power Sources 93, 163 (2001)CrossRefADSGoogle Scholar
  31. 31.
    J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Nanoscale 3, 5103 (2011)CrossRefADSGoogle Scholar
  32. 32.
    A. Al-Hajry, A. Umar, M. Vaseem, M.S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, Y.-B. Hahn, Superlattices Microstruct. 44, 216 (2008)CrossRefADSGoogle Scholar
  33. 33.
    D. Bloor, J.R. Dean, J. Phys. C: Solid State 5, 1237 (1972)CrossRefADSGoogle Scholar
  34. 34.
    Q. Song, Z. Tang, H. Guo, S.L.I. Chan, J. Power Sources 112, 428 (2002)CrossRefADSGoogle Scholar
  35. 35.
    J.T. Kloprogge, D. Wharton, L. Hickey, R.L. Frost, Am. Miner. 87, 623 (2002)CrossRefGoogle Scholar
  36. 36.
    J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, J. Solid State Electrochem. 13, 333 (2009)CrossRefGoogle Scholar
  37. 37.
    M.W. Roberts, R.S.C. Smart, J. Chem. Soc. Faraday I 80, 2957 (1984)CrossRefGoogle Scholar
  38. 38.
    A.F. Carley, S.D. Jackson, J.N. O’Shea, M.W. Roberts, Surf. Sci. 440, L868 (1999)CrossRefADSGoogle Scholar
  39. 39.
    L.M. Moroney, R.S.C. Smart, M.W. Roberts, J. Chem. Soc. Faraday Trans. I 79, 1769 (1983)CrossRefGoogle Scholar
  40. 40.
    A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, Surf. Sci. 600, 1771 (2006)CrossRefADSGoogle Scholar
  41. 41.
    M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41, 324 (2009)CrossRefGoogle Scholar
  42. 42.
    Z. Wu, X.-L. Huang, Z.-L. Wang, J.-J. Xu, H.-G. Wang, X.-B. Zhang, Sci. Rep. 4, 3669 (2014)ADSGoogle Scholar
  43. 43.
    C. Jiang, B. Zhan, C. Li, W. Huang, X. Dong, RSC Adv. 4, 18080 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Menshykau, R.G. Compton, Electroanalysis 20, 2387 (2008)CrossRefGoogle Scholar
  45. 45.
    S. Xing, Q. Wang, Z. Ma, Y. Wu, Y. Gao, Ionics 19, 651 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National University of Science and Technology MISISMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  3. 3.Department of PhysicsFlorida A&M UniversityTallahasseeUSA

Personalised recommendations