Applied Physics A

, 122:289 | Cite as

Femtosecond laser sintering of copper nanoparticles

  • C. W. ChengEmail author
  • J. K. Chen


The ultrafast melting of copper nanoparticles (NPs) induced by a femtosecond laser pulse with duration of 100 fs and wavelength of 800 nm is investigated theoretically and experimentally. The Cu pattern fabricated from sintering of a Cu NP-dispersed film by the femtosecond laser at a repetition rate of 80 MHz is experimentally studied. A one-dimensional two-temperature model with temperature-dependent material properties, including the extended Drude model for dynamic optical properties and the thermophysical properties, is employed to simulate the particles ultrafast melting and re-solidification process.


Femtosecond Laser Femtosecond Laser Pulse Copper Nanoparticles Lattice Temperature Interfacial Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the MOST 103-2218-E-006-015 and MOST 103-2218-E-009-025-MY2 for support of this research.


  1. 1.
    S. Wunscher, R. Abbel, J. Perelaer, U.S. Schubert, Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2, 10232–10261 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Watanabe, T. Miyashita, Formation of copper micro-wiring by laser direct writing. J. Photopolym. Sci. Technol. 20, 115–116 (2007)CrossRefGoogle Scholar
  3. 3.
    Z. Michael, E. Oleg, S. Amir, K. Zvi, Laser sintering of copper nanoparticles. J. Phys. D Appl. Phys. 47, 025501 (2014)CrossRefGoogle Scholar
  4. 4.
    S.J. Kim, D.-J. Jang, Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Son, J. Yeo, H. Moon, T.W. Lim, S. Hong, K.H. Nam, S. Yoo, C.P. Grigoropoulos, D.-Y. Yang, S.H. Ko, Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176–3181 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Huang, M. Sivayoganathan, W.W. Duley, Y. Zhou, Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 331, 392–398 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R. Ebert, F. Ullmann, D. Hildebrandt, J. Schille, L. Hartwig, S. Kloetzer, A. Streek, H. Exner, Laser processing of tungsten powder with femtosecond laser radiation. J. Laser Micro Nanoeng. 7, 38–43 (2012)CrossRefGoogle Scholar
  9. 9.
    B. Nie, H. Huang, S. Bai, J. Liu, Femtosecond laser melting and resolidifying of high-temperature powder materials. Appl. Phys. A Mater. Sci. Process. 118, 37–41 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Cheng, C.J. Huang, H.T. Cheng, C.N. Kuo, Fabrication of porous Ti parts with nanostructures from Ti powders by femtosecond laser pulses. J. Laser Micro Nanoeng. 10, 310–313 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B Opt. Phys. 14, 2716–2722 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J. Yang, Y. Zhao, X. Zhu, Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion. Appl. Phys. A Mater. Sci. Process. 89, 571–578 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl. Phys. A Mater. Sci. Process. 103, 447–453 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 253, 4079–4084 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, J.K. Chen, Ultrafast melting and resolidification of gold particle irradiated by pico- to femtosecond lasers. J. Appl. Phys. 104, 054910 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J. Huang, Y. Zhang, J.K. Chen, Size effects during femtosecond laser interaction with nanosized metal particles. J. Heat Transf. 134, 012401 (2011)CrossRefGoogle Scholar
  17. 17.
    V. Schmidt, W. Husinsky, G. Betz, Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale. Phys. Rev. Lett. 85, 3516–3519 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    K.M. Yoo, X.M. Zhao, M. Siddique, R.R. Alfano, D.P. Osterman, M. Radparvar, J. Cunniff, Femtosecond thermal modulation measurements of electron–phonon relaxation in niobium. Appl. Phys. Lett. 56, 1908–1910 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett. 98, 191105 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Phys. Rev. E 65, 016409 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    C.W. Cheng, S.Y. Wang, K.P. Chang, J.K. Chen, Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison. Appl. Surf. Sci. 361, 41–48 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ren, J.K. Chen, Y. Zhang, Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers. J. Appl. Phys. 110, 113102 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transf. 130, 062401 (2008)CrossRefGoogle Scholar
  25. 25.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233, 275–287 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations