Applied Physics A

, 122:277

Deep drilling of silica glass by continuous-wave laser backside irradiation

  • Hirofumi Hidai
  • Namiko Saito
  • Souta Matsusaka
  • Akira Chiba
  • Noboru Morita
Article

Abstract

We propose a novel method for drilling of silica glass based on the continuous-wave laser backside irradiation (CW-LBI) phenomenon. The method allows drilling to be performed by single-shot irradiation using a CW laser. A spindle-shaped emission is generated in the bulk glass and is then guided to the glass surface, and at the instant that the beam reaches the surface, the glass material is ejected. The glass ejection process occurs for a time of ~250 μs. A hole that is similar in shape to that of the spindle-shaped emission is left. The hole length tended to increase linearly with increasing laser power. The laser power dependence of the spindle-shaped emission propagation velocity is also linear, and the velocity increases with increasing laser power. The hole diameters were smaller in the case where the laser focus position was set on the glass surface, and these diameters increased with increasing defocusing. The maximum hole depth reached more than 5 mm. Through-hole drilling was demonstrated using a 3-mm-thick glass substrate.

References

  1. 1.
    R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)CrossRefADSGoogle Scholar
  2. 2.
    D. Esser, S. Rezaei, J. Li, P.R. Herman, J. Gottmann, Opt. Express 19, 25632 (2011)CrossRefADSGoogle Scholar
  3. 3.
    H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wahmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)CrossRefADSGoogle Scholar
  4. 4.
    L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)CrossRefADSGoogle Scholar
  5. 5.
    S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114, 91 (2014)CrossRefADSGoogle Scholar
  6. 6.
    H. Hidai, S. Matsusaka, A. Chiba, N. Morita, Appl. Phys. A 120, 357 (2015)CrossRefADSGoogle Scholar
  7. 7.
    Y. Matsuoka, Appl. Phys. A 88, 319 (2007)CrossRefADSGoogle Scholar
  8. 8.
    O. Hiroshi, Y. Yoshikazu, Jpn. J. Appl. Phys. 42, 5R 2881 (2003)Google Scholar
  9. 9.
    D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. A 79, 605 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y.Y. Jiang, Opt. Lett. 26, 1912 (2001)CrossRefADSGoogle Scholar
  11. 11.
    E.M. Dianov, V.E. Fortov, I.A. Bufetov, V.P. Efremov, A.E. Rakitin, M.A. Melkumov, M.I. Kulish, A.A. Frolov, IEEE Photonics Tech. Lett. 18, 752 (2006)CrossRefADSGoogle Scholar
  12. 12.
    S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, Berlin, 2014)CrossRefGoogle Scholar
  13. 13.
    S.I. Yakovlenko, Laser Phys. 16, 1273 (2006)CrossRefADSGoogle Scholar
  14. 14.
    H.L. Schick, Chem. Rev. 60, 331 (1960)CrossRefGoogle Scholar
  15. 15.
    H. Hidai, M. Yoshioka, K. Hiromatsu, H. Tokura, Appl. Phys. A 96, 869 (2009)CrossRefADSGoogle Scholar
  16. 16.
    H. Hidai, M. Yoshioka, K. Hiromatsu, H. Tokura, J. Am. Ceram. Soc. 93, 1597 (2010)Google Scholar
  17. 17.
    S. Itoh, H. Hidai, H. Tokura, Appl. Phys. A 112, 1043 (2013)CrossRefADSGoogle Scholar
  18. 18.
    D. Baeuerle, Laser Processing and Chemistry, 3rd edn. (Springer, New York, 2000), p. 81Google Scholar
  19. 19.
    R.I. Golyatina, A.N. Tkachev, S.I. Yakovlenko, Laser Phys. 14, 1429 (2004)Google Scholar
  20. 20.
    S. Todoroki, Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), JW2A.11 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hirofumi Hidai
    • 1
  • Namiko Saito
    • 1
  • Souta Matsusaka
    • 1
  • Akira Chiba
    • 1
  • Noboru Morita
    • 1
  1. 1.Department of Mechanical EngineeringChiba UniversityInage-kuJapan

Personalised recommendations