Advertisement

Applied Physics A

, 122:243 | Cite as

A multifunctional mesoporous Fe3O4/SiO2/CdTe magnetic-fluorescent composite nanoprobe

  • Naiqiang YinEmail author
  • Ping Wu
  • Guo Liang
  • Wenjing Cheng
Article

Abstract

A multifunctional mesoporous, magnetic and fluorescent Fe3O4/SiO2/CdTe nanoprobe with well-defined core–shell nanostructures was prepared. This multifunctional nanoprobe was synthesized through a novel method mainly including two steps. The first step involved the controlled growth of mesoporous silica layer onto the surface of Fe3O4 nanoparticle using tetraethyl orthosilicate as silica source, cationic surfactant cetyltrimethylammonium bromide as template, and 1,3,5-triisopropylbenzene as pore swelling agents. The second step involved the layer-by-layer assembly of 3-aminopropyltrimethoxysilane and fluorescent CdTe quantum dots with the mesoporous Fe3O4/SiO2 nanoparticles. The well-designed nanoprobe exhibits strong excitonic photoluminescence and superparamagnetism at room temperature. In attention, the mesoporous silica layer of the nanoprobe with great loading capacity makes it a promising candidate as targeted drug delivery platform.

Keywords

Fe3O4 Mesoporous Silica Fe3O4 Nanoparticles Target Drug Delivery Silica Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51501128) and Henan National Natural Science Foundation of China (Grant No. 152102410057).

References

  1. 1.
    J. Kim, J.E. Lee, J. Lee, J.H. Yu, B.C. Kim, K. An, Y. Hwang, C.H. Shin, J.G. Park, J. Kim, T. Hyeon, J. Am. Chem. Soc. 128, 688 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    C.L. Dennis, A.J. Jackson, J.A. Borchers, R. Ivkov, A.R. Foreman, P.J. Hoopes, J. Phys. D Appl. Phys. 41, 134020 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    F. Mohammad, G. Balaji, A. Weber, R.M. Uppu, C.S.S.R. Kuma, J. Phys. Chem. C 114, 19194 (2010)CrossRefGoogle Scholar
  5. 5.
    Z.C. Xu, L.Y. Hou, S.H. Sun, J. Am. Chem. Soc. 129, 8698 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Sugimoto, E. Matijević, J. Colloid Interface Sci. 74, 227 (1980)CrossRefGoogle Scholar
  7. 7.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hyeon, Chem. Commun. 8, 927 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Yu, M. Yoshimura, Adv. Funct. Mater. 12, 9 (2012)CrossRefGoogle Scholar
  10. 10.
    S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park, J. Appl. Phys. 93, 7560 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    F. Li, J. Liu, D.G. Evans, X. Duan, Chem. Mater. 16, 1597 (2004)CrossRefGoogle Scholar
  12. 12.
    J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, Nat. Med. 13, 95 (2007)CrossRefGoogle Scholar
  13. 13.
    M.D. Butterworth, L. Illum, S.S. Davis, Colloids Surf. A 179, 93 (2001)CrossRefGoogle Scholar
  14. 14.
    S.H. Liu, R.M. Xing, F. Lu, R.K. Rana, J.J. Zhu, J. Phys. Chem. C 113, 21042 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Gao, Y. Chen, X.F. Ji, X.Y. He, Q. Yin, Z.W. Zhang, J.L. Shi, Y.P. Li, ACS Nano 5, 9788 (2011)CrossRefGoogle Scholar
  16. 16.
    T.N. Narayanan, B.K. Gupta, S.A. Vithayathil, R.R. Aburto, S.A. Mani, J. Taha-Tijerina, B. Xie, B.A. Kaipparettu, S.V. Torti, P.M. Ajayan, Adv. Mater. 24, 2992 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Barbé, J. Bartlett, L.G. Kong, K. Finnie, H.Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Adv. Mater. 16, 1959 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    K.T. Yong, Y. Sahoo, M.T. Swihart, P.N. Prasad, J. Phys. Chem. C 111, 2447 (2007)CrossRefGoogle Scholar
  20. 20.
    W. Cai, X. Chen, Nat. Protoc. 3, 89 (2008)CrossRefGoogle Scholar
  21. 21.
    R.E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100 (2003)CrossRefGoogle Scholar
  22. 22.
    D.J. Bharali, D.W. Lucey, H. Jayakumar, H.E. Pudavar, P.N. Prasad, J. Am. Chem. Soc. 127, 11364 (2005)CrossRefGoogle Scholar
  23. 23.
    J.M. Tsay, M. Pflughoefft, L.A. Bentolila, S. Weiss, J. Am. Chem. Soc. 126, 1926 (2004)CrossRefGoogle Scholar
  24. 24.
    T. Pellegrino, A. Fiore, E. Carlino, C. Giannini, P.D. Cozzoli, G. Ciccarella, M. Respaud, L. Palmirotta, R. Cingolani, L. Manna, J. Am. Chem. Soc. 128, 6690 (2006)CrossRefGoogle Scholar
  25. 25.
    N.Q. Yin, L. Liu, J.M. Lei, T.T. Jiang, L.X. Zhu, X.L. Xu, Chin. Phys. B 22, 097502 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J. Xie, C.J. Xu, N. Kohler, Y.L. Hou, S.H. Sun, Adv. Mater. 19, 3163 (2007)CrossRefGoogle Scholar
  27. 27.
    W.Y. Mao, J. Guo, W.L. Yang, C.H. Wang, J. He, J.Y. Chen, Nanotechnology 18, 485611 (2007)CrossRefGoogle Scholar
  28. 28.
    T.T. Goodman, P.L. Olive, S.H. Pun, Nanomedicine 2, 265 (2007)CrossRefGoogle Scholar
  29. 29.
    C.C. Berry, A.S.G. Curtis, J. Phys. D Appl. Phys. 36, R198 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    C.Y. Hawa, C.H. Chiaa, S. Zakariaa, F. Mohameda, S. Radimana, C.H. Tehb, P.S. Khiewc, W.S. Chiud, N.M. Huangd, Ceram. Int. 37, 451 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Liu, W.X. Xie, D.P. Wang, W.H. Huang, M.J. Yu, A.H. Yao, Mater. Lett. 62, 3014 (2008)CrossRefGoogle Scholar
  32. 32.
    S.Z. Li, Y. Ma, X.L. Yue, Z. Cao, Z.F. Dai, New J. Chem. 33, 2414 (2009)CrossRefGoogle Scholar
  33. 33.
    N.Q. Yin, L. Liu, J.M. Lei, Y.S. Liu, M.G. Gong, Y.Z. Wu, L.X. Zhu, X.L. Xu, Chin. Phys. B 21, 116101 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Imhof, M. Megens, J. Engelberts, J.D.T.N. de Lang, R. Sprik, W.L. Vos, J. Phys. Chem. B 103, 1408 (1999)CrossRefGoogle Scholar
  35. 35.
    N.Q. Yin, Y.S. Liu, L. Liu, J.M. Lei, T.T. Jiang, H.J. Wang, L.X. Zhu, X.L. Xu, J. Alloys Compd. 581, 6 (2013)CrossRefGoogle Scholar
  36. 36.
    P. Mulvaney, L.M. Liz-Marzan, M. Giersig, T.J. Ung, Mater. Chem. 10, 1259 (2000)CrossRefGoogle Scholar
  37. 37.
    Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, L.M. Liz-Marzan, J. Colloid Interface Sci. 283, 392 (2005)CrossRefGoogle Scholar
  38. 38.
    R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. Ohoro, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Science 257, 219 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    T.R. Sathe, A. Agrawal, S.M. Nie, Anal. Chem. 78, 5627 (2006)CrossRefGoogle Scholar
  40. 40.
    Z. Ye, M. Tan, G. Wang, J. Yuan, Anal. Chem. 76, 513 (2004)CrossRefGoogle Scholar
  41. 41.
    H. Yang, H. Qu, P. Lin, S. Li, M. Ding, J. Xu, Analyst 128, 462 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Naiqiang Yin
    • 1
    Email author
  • Ping Wu
    • 1
  • Guo Liang
    • 1
  • Wenjing Cheng
    • 1
  1. 1.School of Physics and Electrical InformationShangqiu Normal UniversityShangqiuPeople’s Republic of China

Personalised recommendations