Advertisement

Applied Physics A

, 122:233 | Cite as

Picosecond pulsed laser deposition of metal-oxide sensing layers with controllable porosity for gas sensor applications

  • Ville Kekkonen
  • Saumyadip Chaudhuri
  • Fergus Clarke
  • Juho Kaisto
  • Jari Liimatainen
  • Santhosh Kumar Pandian
  • Jarkko Piirto
  • Mikael Siltanen
  • Aleksey Zolotukhin
Article
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies

Abstract

Recent results of properties and performance of \(\hbox {WO}_3\) gas sensing layers produced by industrial picosecond pulsed laser deposition process developed by Picodeon Ltd Oy are presented in this paper. \(\hbox {WO}_3\) layers with controllable porosity and nanostructure were successfully deposited on commercial sensor platforms, and basic measurements to characterize their performance as gas sensors gave promising results.

Keywords

Nitric Oxide Pulse Laser Deposition Line Source Tungsten Trioxide Sensor Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 604311, Project SENSIndoor. Center of Microscopy and Nanotechnology at University of Oulu, Finland, is acknowledged for assistance in electron microscopy and Raman studies. The authors wish to thank Mr. Sami Saukko for the TEM studies of the nanoparticle agglomerates. The Functional Electroceramics Thin Film Group of the Microelectronics and Materials Physics laboratories (Department of Electrical Engineering) of the University of Oulu, Finland, is acknowledged for XRD measurements and help in sensor gas response measurements as well as for the support in sensing layer development.

References

  1. 1.
    J. Huotari, J. Lappalainen, J. Puustinen, T. Baur, C. Alépée, T. Haapalainen, S. Komulainen, J. Pylvänäinen, A.L. Spetz, Proc. Eng. 120, 1158–1161 (2015)Google Scholar
  2. 2.
    T. Ohkagi, R. Matsuoka, K. Watanabe, K. Matsumoto, Y. Adachi, I. Sakaguchi, S. Hishita, N. Ohashi, H. Haneda, Sens. Actuators B 150, 99–104 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Bailini, F. Di Fonzo, M. Fusi, C.S. Casari, Bassi A. Li, V. Russo, A. Baserga, C.E. Bottani, Appl. Surf. Sci. 253, 8130–8135 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    F. Mitsugi, E. Hiraiwa, T. Ikegami, K. Ebihara, Surf. Coat. Technol. 169–170, 553–556 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.-K. Chung, M.-H. Kim, W.-S. Um, H.-S. Lee, J.-K. Song, S.-C. Choi, K.-M. Yi, M.-J. Lee, K.-W. Chung, Sens. Actuators B 60, 49–56 (1999)CrossRefGoogle Scholar
  6. 6.
    A.S. Garde, J. Alloys Compd. 617, 367–373 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Ahsan, M.Z. Ahmad, T. Tesfamichael, J.M. Bell, W. Wlodarski, N. Motta, Sens. Actuators B 173, 789–796 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Akamatsu, T. Itoh, N. Izu, W. Shin, Sensors 13, 12467–12481 (2013)CrossRefGoogle Scholar
  9. 9.
    N.M. Vuong, D. Kim, H. Kim, Sci. Rep. 5, 11040 (2015)Google Scholar
  10. 10.
    M. Filipescu, S. Orlando, V. Russo, A. Lamperti, A. Purice, A. Moldovan, M. Dinescu, Appl. Surf. Sci. 253, 8258–8262 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, T. Ohshima, Appl. Surf. Sci. 197–198, 547–551 (2002)CrossRefGoogle Scholar
  12. 12.
    H. Kawasaki, T. Ueda, Y. Suda, T. Ohshima, Sens. Actuators B 100, 266–269 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Lappalainen, R. Viter, J. Puustinen, D. Gornostayev, V. Smyntyna, Proc. Eng. 5, 343–346 (2010)Google Scholar
  14. 14.
    C. Ristoscu, L. Cultera, A. Dima, A. Perrone, R. Cutting, H.L. Du, A. Busiakiewicz, Z. Klusek, P.K. Datta, S.R. Rose, Appl. Surf. Sci. 247, 95–100 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    R. Dolbec, M.A. El Khakani, A.M. Serventi, M. Trudeau, R.G. Saint-Jacques, Thin Solid Films 419, 230–236 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.G. Rickerby, I. Sayago, Sens. Actuators B 77, 383–388 (2001)CrossRefGoogle Scholar
  17. 17.
    M. Filipescu, P.M. Ossi, M. Dinescu, Appl. Surf. Sci. 254, 1347–1351 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    S.-H. Lee, H.M. Cheong, P. Liu, D. Smith, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Electrochim. Acta 46, 1995–1999 (2001)CrossRefGoogle Scholar
  19. 19.
    N.E. Stankova, P.A. Atanasov, T.J. Stanimirova, A. Og Dikovska, R.W. Eason, Appl. Surf. Sci. 247, 401–405 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Akiyama, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. 20, 1611–1614 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ville Kekkonen
    • 1
  • Saumyadip Chaudhuri
    • 1
  • Fergus Clarke
    • 1
  • Juho Kaisto
    • 1
  • Jari Liimatainen
    • 1
  • Santhosh Kumar Pandian
    • 1
  • Jarkko Piirto
    • 1
  • Mikael Siltanen
    • 1
  • Aleksey Zolotukhin
    • 1
  1. 1.Picodeon Ltd OyIiFinland

Personalised recommendations