Applied Physics A

, 122:225 | Cite as

The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation

  • M. Novotný
  • E. Marešová
  • P. Fitl
  • J. Vlček
  • M. Bergmann
  • M. Vondráček
  • R. Yatskiv
  • J. Bulíř
  • P. Hubík
  • P. Hruška
  • J. Drahokoupil
  • N. Abdellaoui
  • M. Vrňata
  • J. Lančok
Article
Part of the following topical collections:
  1. Emerging trends in photo-excitations and promising new laser ablation technologies

Abstract

Samarium-doped zinc oxide (ZnO:Sm)/zinc phthalocyanine (ZnPc) thin film multilayer structure was prepared by combination of pulsed laser deposition (PLD) and organic molecular evaporation (OME). ZnO:Sm thin film was grown by PLD (Nd:YAG, λ = 266 nm, τ = 6 ns) from Sm2O3:ZnO (1 % Sm) target in oxygen ambient at pressure of 10 and 20 Pa at room temperature on fused silica and Si(100) substrates. ZnPc thin film was deposited on ZnO:Sm layer by OME. ZnO:Sm films of c-axis-oriented hexagonal wurtzite structure and α-form ZnPc were obtained. Emission of intra-4f transition in Sm3+ ions and photoluminescence enhancement of near-band-edge emission of ZnO in ZnO:Sm/ZnPc were observed. Electrical properties were not affected by Sm3+ dopant as ZnO:Sm film exhibited high electrical resistivity ~5 × 104 Ω cm.

References

  1. 1.
    C.F. Klingshirn, Zinc Oxide from Fundamental Properties Towards Novel Applications (Springer, Berlin, 2010)Google Scholar
  2. 2.
    U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ziani, A. Tempez, C. Frilay, C. Davesnne, C. Labbe, P. Marie, S. Legendre, X. Portier, Concentration determination and activation of rare earth dopants in zinc oxide thin films. Phys. Status Solidi C 11(9–10), 1497–1500 (2014)CrossRefGoogle Scholar
  4. 4.
    W.M. Jadwisienczak, H.J. Lozykowski, A. Xu, B. Patel, Visible emission from ZnO doped with rare-earth ions. J. Electron. Mater. 31(7), 776–784 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J.C. RonfardHaret, Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide. J. Lumin. 75(1), 35–49 (1997)CrossRefGoogle Scholar
  6. 6.
    X.J. Zhang, W.B. Mi, X.C. Wang, H.L. Bai, First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO. J. Alloys Compd. 617, 828–833 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Murtaza Rai, M.A. Iqbal, Y.B. Xu, I.G. Will, Z.C. Huang, Study of Sm-doped ZnO samples sintered in a nitrogen atmosphere and deposited on n-Si(100) by evaporation technique. J. Magn. Magn. Mater. 323(24), 3239–3245 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.C. Lin, S.L. Young, C.Y. Kung, L. Horng, H.Z. Chen, M.C. Kao, Y.T. Shih, C.R. Ou, Phonon spectra and magnetic behaviors of hydrothermally synthesized Sm-doped ZnO nanorods. Vacuum 87, 178–181 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C.G. Claessens, U. Hahn, T. Torres, Phthalocyanines: from outstanding electronic properties to emerging applications. Chem. Rec. 8(2), 75–97 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Mattioli, F. Filippone, P. Giannozzi, R. Caminiti, A. Amore Bonapasta, Theoretical design of coupled organic–inorganic systems. Phys. Rev. Lett. 101(12), 126805 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Noh, S.I. Seok, Steps toward efficient inorganic–organic hybrid perovskite solar cells. MRS Bull. 40(08), 648–653 (2015)CrossRefGoogle Scholar
  12. 12.
    K.M. Kadish, K.M. Smith, R.U. Guilard, The Porphyrin Handbook: Phthalocyanines: Properties and Materials (Academic Press, San Diego, 2003)Google Scholar
  13. 13.
    D. Wöhrle, G. Schnurpfeil, S.G. Makarov, A. Kazarin, O.N. Suvorova, Practical applications of phthalocyanines—from dyes and pigments to materials for optical, electronic and photo-electronic devices. Macroheterocycles 5(3), 191–202 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Novotny, J. Bulir, A. Bensalah-Ledoux, S. Guy, P. Fitl, M. Vrnata, J. Lancok, B. Moine, Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition. Appl. Phys. A Mater. Sci. Process. 117(1), 377–381 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    G. Mattioli, C. Melis, G. Malloci, F. Filippone, P. Alippi, P. Giannozzi, A. Mattoni, A. Amore, Bonapasta, zinc oxide-zinc phthalocyanine interface for hybrid solar cells. J. Phys. Chem. C 116(29), 15439–15448 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Mattioli, F. Filippone, P. Alippi, P. Giannozzi, A.A. Bonapasta, A hybrid zinc phthalocyanine/zinc oxide system for photovoltaic devices: a DFT and TDDFPT theoretical investigation. J. Mater. Chem. 22(2), 440 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, ZnO nanostructured thin films: depositions, properties and applications—a review. Mater. Express 5(1), 3–23 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Fitl, M. Vrnata, D. Kopecky, J. Vlcek, J. Skodova, J. Bulir, M. Novotny, P. Pokorny, Laser deposition of sulfonated phthalocyanines for gas sensors. Appl. Surf. Sci. 302, 37–41 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Brédas, J. Genoe, The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv. Funct. Mater. 22(14), 2987–2995 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Novotný, J. Šebera, A. Bensalah-Ledoux, S. Guy, J. Bulíř, P. Fitl, J. Vlček, D. Zákutná, E. Marešová, P. Hubík, I. Kratochvílová, M. Vrňata, J. Lančok, The growth of zinc phthalocyanine thin films by pulsed laser deposition. J. Mater. Res. 31(01), 163–172 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Novotny, J. Cizek, R. Kuzel, J. Bulir, J. Lancok, J. Connolly, E. McCarthy, S. Krishnamurthy, J.P. Mosnier, W. Anwand, G. Brauer, Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition. J. Phys. D Appl. Phys. 45(22), 225101 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    D. Valerini, A.P. Caricato, M. Lomascolo, F. Romano, A. Taurino, T. Tunno, M. Martino, Zinc oxide nanostructures grown by pulsed laser deposition. Appl. Phys. A 93(3), 729–733 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    E. Ina, N. Matsumoto, E. Shikada, F. Kannari, Laser ablation deposition of crystalline copper-phthalocyanine thin films. Appl. Surf. Sci. 127, 574–578 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    R. Vasina, V. Kolarik, P. Dolezel, M. Mynar, M. Vondracek, V. Chab, J. Slezak, C. Comicioli, K.C. Prince, Mechanical design aspects of a soft X-ray plane grating monochromator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 467, 561–564 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    F. Claeyssens, A. Cheesman, S.J. Henley, M.N.R. Ashfold, Studies of the plume accompanying pulsed ultraviolet laser ablation of zinc oxide. J. Appl. Phys. 92(11), 6886–6894 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Zhicheng, Z. Yongping, L. Fachun, L. Heng, H. Zhinan, H. Zhigao, Effects of samarium doping on optical properties of Zn0.9(Co1−xSmx)0.1O diluted magnetic semiconductor. J. Rare Earths 24(1), 270–272 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Senthilarasu, R. Sathyamoorthy, S.K. Kulkarni, Substrate temperature effects on structural orientations and optical properties of ZincPthalocyanine (ZnPc) thin films. Mater. Sci. Eng. B 122(2), 100–105 (2005)CrossRefGoogle Scholar
  28. 28.
    Complete EASE Data Analyses Manual (J.A. Woollam Co. Inc, Lincoln, 2011)Google Scholar
  29. 29.
    Z.T. Liu, H.S. Kwok, A.B. Djurišić, The optical functions of metal phthalocyanines. J. Phys. D Appl. Phys. 37(5), 678–688 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    M. Wojdyła, B. Derkowska, Z. Łukasiak, W. Bała, Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation. Mater. Lett. 60(29–30), 3441–3446 (2006)CrossRefGoogle Scholar
  31. 31.
    M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt. Mater. 27(3), 491–498 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    X.W. Sun, H.S. Kwok, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys. 86(1), 408 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    J. Cizek, J. Valenta, P. Hruska, O. Melikhova, I. Prochazka, M. Novotny, J. Bulir, Origin of green luminescence in hydrothermally grown ZnO single crystals. Appl. Phys. Lett. 106(25), 251902 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    C. Chen, H. He, Y. Lu, K. Wu, Z. Ye, Surface passivation effect on the photoluminescence of ZnO nanorods. ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013)CrossRefGoogle Scholar
  35. 35.
    T. Tsuji, Y. Terai, Mhb Kamarudin, M. Kawabata, Y. Fujiwara, Photoluminescence properties of Sm-doped ZnO grown by sputtering-assisted metal organic chemical vapor deposition. J. Non-Cryst. Solids 358(17), 2443–2445 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    R. Kuzel, J. Cizek, M. Novotny, On X-ray diffraction study of microstructure of ZnO thin nanocrystalline films with strong preferred grain orientation. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44A(1), 45–57 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci. 197, 362–367 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    S.P. Heluani, G. Braunstein, M. Villafuerte, G. Simonelli, S. Duhalde, Electrical conductivity mechanisms in zinc oxide thin films deposited by pulsed laser deposition using different growth environments. Thin Solid Films 515(4), 2379–2386 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Ahlund, N. Martensson, H. Siegbahn, C. Puglia, Equivalent core-hole time-dependent density functional theory calculations of carbon 1s shake-up states of phthalocyanine. Phys. Rev. B 70(19), 195214 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Novotný
    • 1
  • E. Marešová
    • 1
    • 2
  • P. Fitl
    • 1
    • 2
  • J. Vlček
    • 1
    • 2
  • M. Bergmann
    • 2
  • M. Vondráček
    • 1
  • R. Yatskiv
    • 4
  • J. Bulíř
    • 1
  • P. Hubík
    • 1
  • P. Hruška
    • 1
    • 3
  • J. Drahokoupil
    • 1
  • N. Abdellaoui
    • 5
  • M. Vrňata
    • 2
  • J. Lančok
    • 1
  1. 1.Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
  2. 2.University of Chemistry and Technology, PraguePrague 6Czech Republic
  3. 3.Faculty of Mathematics and PhysicsCharles University in PraguePrague 8Czech Republic
  4. 4.Institute of Photonics and ElectronicsCzech Academy of SciencesPrague 8Czech Republic
  5. 5.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne CedexFrance

Personalised recommendations