Applied Physics A

, 122:255 | Cite as

Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives

  • Vida Turkovic
  • Sebastian Engmann
  • Nikos Tsierkezos
  • Harald Hoppe
  • Morten Madsen
  • Horst-Günter Rubahn
  • Uwe Ritter
  • Gerhard Gobsch
Article
Part of the following topical collections:
  1. Smart Materials and Structures

Abstract

Stability of organic solar cells (OPV) remains a big problem on the way to their commercialization. Different approaches are being investigated: development of intrinsically more photochemically stable materials, optimization of encapsulation, and implementation of getter and UV blocking layers. In this study, we investigate stabilization of OPV devices using hydroperoxide decomposers as stabilizing additives. A set of five commercially available additives of organophosphorus, organosulfur, Ni chelate, and blocked thiol type are compared, ternary blended into the active layer, under exposure to aging under ISOS-3 degradation conditions. Improvements in long-term performance of OPV devices were observed upon stabilization with Advapak NEO-1120, lifetime was prolonged by a factor of 1.7, and accumulated power generation increased by a factor of 1.4. The stabilizing mechanisms are discussed using spectroscopic and microscopic measurements.

Notes

Acknowledgments

The authors would like to thank Katrin Risch for recording the FTIR spectra and Doreen Schneider for additional CV measurements. We thankfully acknowledge Dr. Solon Economopoulos for valuable discussion on cyclic voltammetry, and Christiane Orset from Rohm and Haas Europe for material samples. Financial support from the Federal State of Thuringia via the Landesgraduierten Stipendium, and Federal Ministry of Education and Research (BMBF) for funding of research projects EOS (Grant Number 03X3516F), from Interreg 4A Syddanmark-Schleswig-K.E.R.N. for funding project eMotion, and Det Frie Forskningsråd for funding project StabilO is gratefully acknowledged.

Supplementary material

339_2016_9758_MOESM1_ESM.docx (636 kb)
Supplementary material 1 (DOCX 636 kb)
339_2016_9758_MOESM2_ESM.pdf (151 kb)
Supplementary material 2 (PDF 150 kb)

References

  1. 1.
    Heliatek consolidates its technology leadership by establishing a new world record for organic solar technology with a cell efficiency of 12% (Heliatek, 2013), http://www.heliatek.com/en/press/press-releases/details/heliatek-consolidates-its-technology-leadership-by-establishing-a-new-world-record-for-organic-solar-technology-with-a-cell-effi. Accessed 28 August 2015
  2. 2.
    M. Jorgensen, K. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)CrossRefGoogle Scholar
  3. 3.
    V. Turkovic, S. Engmann, D.A.M. Egbe, M. Himmerlich, S. Krischok, G. Gobsch, H. Hoppe, Sol. Energy Mater. Sol. Cells, Part B 120, 654–668 (2014)CrossRefGoogle Scholar
  4. 4.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715–726 (2008)CrossRefGoogle Scholar
  5. 5.
    M.D. Alexander, C.E. Specker, D.S. Dudis, in Reactive Intermediates in Organic and Biological Electrochemistry, ed. by D.G. Peters, H.J. Schafer, M.S. Workentin, J. Yoshida (The Electrochemical Society, Pennington, 2001), pp. 164–167Google Scholar
  6. 6.
    S.P. Mishra, A.K. Palai, A. Kumar, R. Srivastava, M.N. Kamalasanan, M. Patri, Macromol. Chem. Phys. 211, 1890–1899 (2010)CrossRefGoogle Scholar
  7. 7.
    D.M. Tanenbaum, H.F. Dam, R. Rosch, M. Jorgensen, H. Hoppe, F.C. Krebs, Sol. Energy Mater. Sol. Cells 97, 157–163 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Madakasira, K. Inoue, R. Ulbricht, S.B. Lee, M. Zhou, J.P. Ferraris, A.A. Zakhidov, Synth. Met. 155, 332–335 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Amberg-Schwab, U. Weber, A. Burger, S. Nique, R. Xalter, Monatsh. Chem. 137, 657–666 (2006)CrossRefGoogle Scholar
  10. 10.
    T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, K. Takahashi, Sol. Energy Mater. Sol. Cells 92, 1476–1482 (2008)CrossRefGoogle Scholar
  11. 11.
    P. Jongwoon, H. Hyogyun, K. Youngmo, L. Jongho, P. Junghwan, in 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Seattle, OR, USA, 2011), pp. 001192–001194Google Scholar
  12. 12.
    S. Engmann, M. Machalett, V. Turkovic, R. Rosch, E. Radlein, G. Gobsch, H. Hoppe, J. Appl. Phys. 112, 034514–034517 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H. Sun, J. Weickert, H.C. Hesse, L. Schmidt-Mende, Sol. Energy Mater. Sol. Cells 95, 3450–3454 (2011)CrossRefGoogle Scholar
  14. 14.
    M.S. Ryu, H.J. Cha, J. Jang, Sol. Energy Mater. Sol. Cells 94, 152–156 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Manceau, E. Bundgaard, J.E. Carle, O. Hagemann, M. Helgesen, R. Sondergaard, M. Jorgensen, F.C. Krebs, J. Mater. Chem. 21, 4132–4141 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Hintz, C. Sessler, H. Peisert, H.J. Egelhaaf, T. Chasse, Chem. Mater. 24, 2739–2743 (2012)CrossRefGoogle Scholar
  17. 17.
    D.J. Harper, J.F. McKellar, J. Appl. Polym. Sci. 18, 1233–1238 (1974)CrossRefGoogle Scholar
  18. 18.
    H. Zweifel, Stabilization of Polymeric Materials (Springer, Berlin, 1998), pp. 1–213CrossRefGoogle Scholar
  19. 19.
    A.J. Chirinos-Padron, S.A. Allen, in Handbook of Polymer Degradation, ed. by H.S. Hamid, M.B. Amin, A.G. Maadhah (Marcel Dekker, Inc., New York, 1992), pp. 261–303Google Scholar
  20. 20.
    N.S. Allen, A. Chirinospadron, J.H. Appleyard, Polym. Degrad. Stab. 4, 223–237 (1982)CrossRefGoogle Scholar
  21. 21.
    N.S. Allen, A. Chirinospadron, J.H. Appleyard, Polym. Photochem. 5, 333–349 (1984)CrossRefGoogle Scholar
  22. 22.
    N.S. Allen, A. Chirinos-Padron, J.H. Appleyard, Polym. Degrad. Stab. 5, 323–338 (1983)CrossRefGoogle Scholar
  23. 23.
    F. Gugumus, in Plastics Additives Handbook, ed. by R. Gachter, H. Muller, P.P. Klemchuk (Hanser/Gardner Publications Inc., Cincinnati, 1993), pp. 1–104Google Scholar
  24. 24.
    C. Armstrong, M.J. Husbands, G. Scott, Eur. Polym. J. 15, 241–248 (1979)CrossRefGoogle Scholar
  25. 25.
    A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 90, 163517–163900 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Advapak NEO-1120 Stabilizer One-pack, Rohm and Haas Chemicals Llc, Philadelphia, PA, USAGoogle Scholar
  27. 27.
    X. Xiang, S. Chen, J. Zhang, R. Chai, Polym. Eng. Sci. 51, 624–631 (2011)CrossRefGoogle Scholar
  28. 28.
    X. Xiang, S. Chen, J. Zhang, X. Huang, Polym. Eng. Sci. 50, 1095–1104 (2010)CrossRefGoogle Scholar
  29. 29.
    V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, U. Ritter, G. Gobsch, ACS Appl. Mater. Interfaces 6, 18525–18537 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vida Turkovic
    • 1
    • 3
  • Sebastian Engmann
    • 1
    • 4
  • Nikos Tsierkezos
    • 2
  • Harald Hoppe
    • 1
  • Morten Madsen
    • 3
  • Horst-Günter Rubahn
    • 3
  • Uwe Ritter
    • 2
  • Gerhard Gobsch
    • 1
  1. 1.Institute of Physics and Institute of Micro- and NanotechnologiesIlmenau University of TechnologyIlmenauGermany
  2. 2.Institute of Chemistry and BiotechnologyIlmenau University of TechnologyIlmenauGermany
  3. 3.Mads Clausen InstituteUniversity of Southern DenmarkSønderborgDenmark
  4. 4.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations