Advertisement

Applied Physics A

, 122:241 | Cite as

Direct observation of the lattice sites of implanted manganese in silicon

  • Daniel José da Silva
  • Ulrich Wahl
  • João Guilherme Correia
  • Lígia Marina Amorim
  • Stefan Decoster
  • Manuel Ribeiro da Silva
  • Lino Miguel da Costa Pereira
  • João Pedro Araújo
Article

Abstract

Mn-doped Si has attracted significant interest in the context of dilute magnetic semiconductors. We investigated the lattice location of implanted Mn in silicon of different doping types (n, \(n^+\) and \(p^+\)) in the highly dilute regime. Three different lattice sites were identified by means of emission channeling experiments: ideal substitutional sites; sites displaced from bond-centered toward substitutional sites; and sites displaced from anti-bonding toward tetrahedral interstitial sites. For all doping types investigated, the substitutional fraction remained below \(\sim\)30 %. We discuss the origin of the observed lattice sites as well as the implications of such structures on the understanding of Mn-doped Si systems.

Keywords

Manganese in silicon Lattice location Emission channeling 

Notes

Acknowledgments

This work was supported by FCT-Portugal, project CERN-FP-123585-2011, the Fund for Scientific Research-Flanders, the KU Leuven Projects No. GOA/2009/006 and GOA/2014/007 and by the European Union FP7-through ENSAR, contract 262010. D.J. Silva is thankful for FCT Grant SFRH/BD/69435/2010. Project Norte-070124-FEDER-000070 is acknowledged.

References

  1. 1.
    T. Dietl, H. Ohno, Rev. Mod. Phys.86, 187 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    S. Zhou, H. Schmidt, Materials3, 5054 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    V. Ko, K.L. Teo, T. Liew, T.C. Chong, M. MacKenzie, I. MacLaren, J.N. Chapman, J. Appl. Phys.104, 033912 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R. Leitsmann, C. Panse, F. Küwen, F. Bechstedt, Phys. Rev. B80, 104412 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Z.Z. Zhang, B. Partoens, K. Chang, F.M. Peeters, Phys. Rev. B77, 155201 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B.R. Sahu, S.K. Banerjee, Phys. Rev. B77, 155202 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    F. Küwen, R. Leitsmann, F. Bechstedt, Phys. Rev. B80, 045203 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    V. Zamudio-Bayer, L. Leppert, K. Hirsch, A. Langenberg, J. Rittmann, M. Kossick, M. Voge, R. Richter, A. Terasaki, T. Möller, B.V.I.S. Kümmel, J.T. Lau, Phys. Rev. B88, 115425 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Zeng, J.X. Cao, E. Helgren, J. Karel, E. Arenholz, L. Ouyang, D.J. Smith, R.Q. Wu, F. Hellman, Phys. Rev. B82, 165202 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    E.R. Weber, Appl. Phys. A30, 1 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    H. Nakashima, K. Hashimoto, J. Appl. Phys.69, 1440 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    T. Roth, P. Rosenits, S. Diez, S.W. Glunz, J. Appl. Phys.102, 103716 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S. Zhou, K. Potzger, G. Zhang, A. Mücklich, F. Eichhorn, N. Schell, R. Grötzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, D. Geiger, Phys. Rev. B75, 085203 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Zhou, A. Shalimov, K. Potzger, M. Helm, J. Fassbender, H. Schmidt, Phys. Rev. B80, 174423 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    F.J. Ruess, M.E. Kazzi, L. Czornomaz, P. Mensch, M. Hopstaken, A. Fuhrer, Appl. Phys. Lett.102, 082101 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.M. Otrokov, A. Ernst, V.V. Tugushev, S. Ostanin, P. Buczek, L.M. Sandratskii, G. Fischer, W. Hergert, I. Mertig, V.M. Kuznetsov, E.V. Chulkov, Phys. Rev. B84, 144431 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Wolska, K. Lawniczak-Jablonska, M. Klepka, M.S. Walczak, A. Misiuk, Phys. Rev. B75, 113201 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    U. Wahl, J.G. Correia, E. Rita, J.P. Araújo, J.C. Soares, Phys. Rev. B72, 014115 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    L.M.C. Pereira, U. Wahl, S. Decoster, J.G. Correia, L.M. Amorim, M.R.D. Silva, J.P. Araújo, A. Vantomme, Phys. Rev. B84, 125204 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    L.M.C. Pereira, U. Wahl, J.G. Correia, S. Decoster, L.M. Amorim, M.R.D. Silva, J.P. Araújo, A. Vantomme, Phys. Rev. B86, 195202 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L.M.C. Pereira, U. Wahl, S. Decoster, J.G. Correia, L.M. Amorim, M.R.D. Silva, J.P. Araújo, A. Vantomme, Phys. Rev. B86, 125206 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. Sect. B219, 1027 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    U. Wahl, J.G. Correia, S. Cardoso, J.G. Marques, A. Vantomme, G. Langouche, Nucl. Instrum. Methods Phys. Res. Sect. B136, 744 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A506, 250 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, E. Bosne, M.R. da Silva, J.P. Araújo, J. Appl. Phys.115, 023504 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    U. Wahl, J.G. Correia, A. Vantomme, G. Langouche, Phys. B273, 367 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    U. Wahl, A. Vantomme, G. Langouche, J.P. Araújo, L. Peralta, J.G. Correia, Appl. Phys. Lett.77, 2142 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    U. Wahl, A. Vantomme, G. Langouche, J.G. Correia, Phys. Rev. Lett.84, 1495 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    U. Wahl, J.G. Correia, E. Rita, J.P. Araújo, J.C. Soares, Nucl. Instrum. Methods Phys. Res. B253, 167 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Silva, U. Wahl, J.G. Correia, J.P. Araújo, J. Appl. Phys.114, 103503 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, M.R. da Silva, J.P. Araújo, Semicond. Sci. Technol.29, 125006 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    K. Dev, M.Y.L. Jung, R. Gunawan, R.D. Braatz, E.G. Seebauer, Phys. Rev. B68, 195311 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A. AlZahrani, Phys. B405, 4195 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    W. Zhu, Z. Zhang, E. Kaxiras, Phys. Rev. Lett.100, 027205 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    H. Chen, W. Zhu, Phys. Rev. B79, 235202 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Decoster, S. Cottenier, B.D. Vries, H. Emmerich, U. Wahl, J.G. Correia, A. Vantomme, Phys. Rev. Lett.102, 065502 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    S. Decoster, S. Cottenier, U. Wahl, J.G. Correia, L.M.C. Pereira, C. Lacasta, M.R.D. Silva, A. Vantomme, Appl. Phys. Lett.97, 151914 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S.K. Estreicher, M. Sanati, N.G. Szwacki, Phys. Rev. B77, 125214 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    D. Gilles, W. Schroter, W. Bergholz, Phys. Rev. B41, 5770 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    H. Lemke, Phys. Status Solidi A76, 223 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel José da Silva
    • 1
    • 2
  • Ulrich Wahl
    • 3
  • João Guilherme Correia
    • 3
  • Lígia Marina Amorim
    • 2
  • Stefan Decoster
    • 2
  • Manuel Ribeiro da Silva
    • 4
  • Lino Miguel da Costa Pereira
    • 2
  • João Pedro Araújo
    • 1
  1. 1.IFIMUP and IN-Institute of Nanoscience and NanotechnologyDepartamento de Física e Astronomia da Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Instituut voor Kern- en StralingsfysicaKU LeuvenLeuvenBelgium
  3. 3.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaSacavémPortugal
  4. 4.Centro de Física Nuclear da Universidade de LisboaLisboaPortugal

Personalised recommendations