Applied Physics A

, 122:197 | Cite as

Geopolymers as potential repair material in tiles conservation

  • Catarina F. M. Geraldes
  • Augusta M. Lima
  • José Delgado-Rodrigues
  • João Manuel Mimoso
  • Sílvia R. M. PereiraEmail author
Invited Paper
Part of the following topical collections:
  1. Sustainable solutions for restoration and conservation of cultural heritage


The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles (azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical–mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as “cold” cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.


Pore Size Distribution Geopolymer Fume Silica Soluble Salt Ceramic Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Fundação para a Ciência e a Tecnologia for financial support for the development of the present research (Project CerAzul: PTDC/CTM-CER/119085/2010 and UID/EAT/00729/2013). Cromogenia Units from Spain is thanked for providing Metastar® 501, and Nova Terracota S.A. from Portugal for the ceramic biscuits used. Norman H. Tennent and Isabel Martins are acknowledged for the discussion and advice during the work.


  1. 1.
    P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, J. Mater. Sci. 42(9), 2917–2933 (2006). doi: 10.1007/s10853-006-0637-z ADSCrossRefGoogle Scholar
  2. 2.
    A. Autef, E. Joussein, G. Gasgnier, S. Rossignol, J. Non-Cryst. Solids. 358(21), 2886–2893 (2012). doi: 10.1016/j.jnoncrysol.2012.07.015 ADSCrossRefGoogle Scholar
  3. 3.
    D. Khale, D.R. Chaudhary, J. Mater. Sci. 42(3), 729–746 (2007). doi: 10.1007/s10853-006-0401-4 ADSCrossRefGoogle Scholar
  4. 4.
    S.B.H. Farid, Ceram. Int. 40(9), 15027–15032 (2014). doi: 10.1016/j.ceramint.2014.06.106 CrossRefGoogle Scholar
  5. 5.
    Ch. Panagiotopoulou, E. Kontori, Th Perraki, G. Kakali, J. Mater. Sci. 42(9), 2967–2973 (2006). doi: 10.1007/s10853-006-0531-8 ADSCrossRefGoogle Scholar
  6. 6.
    H. Xu, J.S.J. Van Deventer, Int. J. Miner. Process. 59(3), 247–266 (2000). doi: 10.1016/S0301-7516(99)00074-5 CrossRefGoogle Scholar
  7. 7.
    A.M. Rashad, Constr. Build. Mater. 41, 751–765 (2013). doi: 10.1016/j.conbuildmat.2012.12.030 CrossRefGoogle Scholar
  8. 8.
    P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Cem. Concr. Res. 37(12), 1590–1597 (2007). doi: 10.1016/j.cemconres.2007.08.018 CrossRefGoogle Scholar
  9. 9.
    F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Constr. Build. Mater. 22(7), 1305–1314 (2008). doi: 10.1016/j.conbuildmat.2007.10.015 CrossRefGoogle Scholar
  10. 10.
    J. Davidovits, S. Quentin, J. Therm. Anal. 37, 1633–1656 (1991)CrossRefGoogle Scholar
  11. 11.
    A.D. Hounsi, G. Lecomte-Nana, G. Djétéli, P. Blanchart, D. Alowanou, P. Kpelou, K. Napo, G. Tchangbédji, M. Praisler, Ceram. Int. 40(7), 8953–8962 (2014). doi: 10.1016/j.ceramint.2014.02.052 CrossRefGoogle Scholar
  12. 12.
    W. Guo, G. Wu, J. Wang, Z. Wen, S. Yin, J. Wuhan Univ. Technol. 23(3), 326–330 (2008). doi: 10.1007/s11595-007-3326-0 CrossRefGoogle Scholar
  13. 13.
    A. Pinto, Sistemas Ligantes Obtidos por Activação Alcalina do Metacaulino. Ph.D. thesis, Minho University (2004)Google Scholar
  14. 14.
    H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, B. Van Mele, J. Mater. Sci. 42(9), 2982–2996 (2006). doi: 10.1007/s10853-006-0568-8 ADSCrossRefGoogle Scholar
  15. 15.
    M. Lizcano, H.S. Kim, S. Basu, M. Radovic, J. Mater. Sci. 47(6), 2607–2616 (2011). doi: 10.1007/s10853-011-6085-4 ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zuhua, Y. Xiao, Z. Huajun, C. Yue, Appl. Clay Sci. 43(2), 218–223 (2009). doi: 10.1016/j.clay.2008.09.003 CrossRefGoogle Scholar
  17. 17.
    G.S. Ryu, Y.B. Lee, K.T. Koh, Y.S. Chung, Constr. Build. Mater. 47(2013), 409–418 (2013). doi: 10.1016/j.conbuildmat.2013.05.069 CrossRefGoogle Scholar
  18. 18.
    K.J.D. MacKenzie, D.R.M. Brew, R.A. Fletcher, R. Vagana, J. Mater. Sci. 42(12), 4667–4674 (2007). doi: 10.1007/s10853-006-0173-x ADSCrossRefGoogle Scholar
  19. 19.
    M. Mendes, T.A. Ferreira, J.D. Rodrigues, J.M. Mimoso, S.R.M. Pereira, Volumetric and chromatic reintegration in conservation of in situ glazed tiles. in International Conference, Glaze Ceramics in Architectural Heritage (LNEC, Lisbon, Portugal, 2015), pp 259–261Google Scholar
  20. 20.
    T. Hanzlíček, M. Steinerová, P. Straka, I. Perná, P. Siegl, T. Švarcová, Mater. Des. 30(8), 3229–3234 (2009). doi: 10.1016/j.matdes.2008.12.015 CrossRefGoogle Scholar
  21. 21.
    K. Elert, E.S. Pardo, C. Rodriguez-Navarro, J. Cult. Herit. (2014). doi: 10.1016/j.culher.2014.09.012 Google Scholar
  22. 22.
    S. Rescic, P. Plescia, P. Cossari, E. Tempesta, D. Capitani, N. Proietti, A.M. Mecchi, Proc. Eng. 21, 1061–1071 (2011). doi: 10.1016/j.proeng.2011.11.2112 CrossRefGoogle Scholar
  23. 23.
    T. Skorina, Appl. Clay Sci. 87, 205–211 (2014). doi: 10.1016/j.clay.2013.11.003 CrossRefGoogle Scholar
  24. 24.
    ©Imerys Minerals Ltd. 2012. Europe. Accessed 10 Oct 2014
  25. 25.
    C. Kuenel, T.P. Neville, S. Donatello, L. Vandeperre, A.R. Boccaccini, C.R. Cheeseman, Appl. Clay Sci. 83–84, 308–314 (2013). doi: 10.1016/j.clay.2013.08.023 CrossRefGoogle Scholar
  26. 26.
    ©Imerys Pigments. 2010 North America Accessed 10 October 2014
  27. 27.
    J. Musacch, Conservation of historical Portuguese tiles: adhesives for outdoor exposure. Master’s Thesis (2012)Google Scholar
  28. 28.
    C. Kuenzel, L. Vandeperre, S. Donatello, A.R. Boccaccini, C.R. Cheeseman, J. Am. Chem. Soc. 95(10), 3270–3277 (2012). doi: 10.1111/j.1551-2916.2012.05380.x Google Scholar
  29. 29.
    I. Perná, T. Hanzlíček, M. Šupová, Appl. Clay Sci. 102, 213–219 (2014). doi: 10.1016/j.clay.2014.09.042 CrossRefGoogle Scholar
  30. 30.
    J. Xie, O. Kayali, Constr. Build. Mater. 67, 20–28 (2014). doi: 10.1016/j.conbuildmat.2013.10.047 CrossRefGoogle Scholar
  31. 31.
    M. Irfan Khan, A. Khairun, S. Suriati, Z. Man, Ceram. Int. 45(2), 2794–2805 (2015). doi: 10.1016/j.ceramint.2014.10.099 CrossRefGoogle Scholar
  32. 32.
    B. Mo, H. Zhu, X. Cui, Y. He, S. Gong, Appl. Clay Sci. 99, 144–148 (2014). doi: 10.1016/j.clay.2014.06.024 CrossRefGoogle Scholar
  33. 33.
    M.S. Muñiz-Villarreal, A. Manzano-Ramírez, S. Sampieri-Bulbarela, J.R. Gasca-Tirado, J.L. Reyes-Araiza, J.C. Rubio-Ávalos, J.J. Pérez-Bueno, L.M. Apatiga, A. Zaldivar-Cadena, V. Amigó-Borrás, Mater. Lett. 65(6), 995–998 (2011). doi: 10.1016/j.matlet.2010.12.049 CrossRefGoogle Scholar
  34. 34.
    P. Rovnaník, Constr. Build. Mater. 24(7), 1176–1183 (2010). doi: 10.1016/j.conbuildmat.2009.12.023 CrossRefGoogle Scholar
  35. 35.
    J. Costa Pessoa, J.F. Farinha Antunes, M.O. Figueiredo, M.A. Fortes, Stud. Conserv. 41(3), 153–160 (1996).
  36. 36.
    C. Borges, C. Caetano, J. Costa Pessoa, M. Figueiredo, A. Lourenço, M. Malhoa Gomes, T.P. Silva, J.P. Veiga, J. Chromatogr. A 770(1–2), 195–201 (1997). doi: 10.1016/S0021-9673(97)00175-1 CrossRefGoogle Scholar
  37. 37.
    J.L.F. Antunes, D.S. Tavares, in dE la Cerámica Decorada estudio y la Conservación dE la Cerámica Decorada En Arquitectura, ed. by A. Balderrama, A. Vidal, I. Cardiel, E.N. Roma (ICCROM, Roma, 2003), p. 22Google Scholar
  38. 38.
    M.T. Mendes, S. Pereira, T. Ferreira, J. Mirão, A. Candeias, Int. J. Cons. Sci. 6(1), 51–62 (2015)Google Scholar
  39. 39.
    L.M. Ottosen, C.M.D. Ferreira, I.V. Christensen, J. Appl. Electrochem. 40(6), 1161–1171 (2010). doi: 10.1007/s10800-010-0086-x CrossRefGoogle Scholar
  40. 40.
    X.X. Gao, A. Autef, E. Prud’homme, P. Michaud, E. Joussein, S. Rossignol, J. Sol-Gel. Sci. Technol. 65(2), 220–229 (2012). doi: 10.1007/s10971-012-2927-z CrossRefGoogle Scholar
  41. 41.
    Z. Zhang, H. Wang, J.L. Provis, F. Bullen, A. Reid, Y. Zhu, Thermochim. Acta 539, 23–33 (2012). doi: 10.1016/j.tca.2012.03.021 CrossRefGoogle Scholar
  42. 42.
    A. Elimbi, H.K. Tchakoute, M. Kondoh, J.D. Manga, Ceram. Int. 40, 4515–4520 (2014). doi: 10.1016/j.ceramint.2013.08.126 CrossRefGoogle Scholar
  43. 43.
    W.K.W. Lee, J.S.J. Van Deventer, Langmuir 19, 8726–8734 (2003). doi: 10.1021/la026127e CrossRefGoogle Scholar
  44. 44.
    V. Stubican, R. Roy, Infrared spectra of layer-structure silicates, J. Am. Cer. Soc. 44(12), 625–627 (1961). doi: 10.1111/j.1151-2916.1961.tb11670.x CrossRefGoogle Scholar
  45. 45.
    C.A. Rees, J.S.J. van Deventer, J. Provis, G.C. Lukey, Mechanisms and kinetics of gel formation in geopolymers, PhD thesis, The University of Melbourne (2007).
  46. 46.
    S. Pereira, J.M Mimoso, A. Santos Silva, Physical-Chemical characterization of historic portuguese tiles, Relatório 23/2011-NPC/NMM, LNEC (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratório Nacional de Engenharia Civil- LNECLisbonPortugal
  2. 2.Departamento de Conservação e Restauro, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
  3. 3.Unidade de Investigação VICARTE – Vidro e Cerâmica para as Artes, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal

Personalised recommendations