Applied Physics A

, 122:173 | Cite as

Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method

  • G. Flores-Carrasco
  • J. Carrillo-López
  • R. Martínez-Martínez
  • N. D. Espinosa-Torres
  • L. Muñoz
  • O. Milosevic
  • M. E. Rabanal


Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increase in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.


Precursor Concentration Ultrasonic Spray Pyrolysis Local Vibrational Mode Zinc Hydroxide Precursor Solution Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



G. Flores-Carrasco acknowledges the financial support of CONACyT for the grant to carry out Ph.D. studies and the facilities given by VIEP-BUAP-2015 and CIDS-ICUAP. Authors would like to thank the Innovation and Education Ministry (ref. MAT2013‐47460‐C5‐5‐P) and the Autonomous Region Program of Madrid, MULTIMAT-CHALLENGE (ref. S2013/MIT‐2862) for supporting our work by providing financial resources and laboratory equipment. This work has been carried out in the Department of Materials Science and Engineering and Chemical Engineering of the University Carlos III of Madrid, Spain. The author (O.M.) kindly acknowledges support of the Ministry of Education, Science and Technological Development of Serbia (OI 172035).


  1. 1.
    P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103, 459–463 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    H.K. Fu, C.L. Cheng, C.H. Wang, T.Y. Lin, Y.F. Chen, Adv. Funct. Mater. 19, 3471–3475 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Qin, X. Wang, Z.L. Wang, Nat. Mater. 451, 809–813 (2008)CrossRefGoogle Scholar
  4. 4.
    M.-H. Wang, C. Yao, N.-F. Zhang, J. Mater. Process. Technol. 202, 406–411 (2008)CrossRefGoogle Scholar
  5. 5.
    S.-Y. Lee, A. Umar, D.-I. Suh, J.-E. Park, Y.-B. Hahn, J.-Y. Ahn, S.-K. Lee, Phys. E 40, 866–872 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.C. Lux-Steiner, S. Gavrilov, Sol. Energy Mater. Cells 93, 1033–1036 (2009)CrossRefGoogle Scholar
  7. 7.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897–1899 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtanis, S. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42–46 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    B. Xiang, P. Wang, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang, Nano Lett. 7, 323–328 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673–677 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, J. Appl. Phys. 98, 041301–041403 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  13. 13.
    V. Gavryushin, G. Račiukaitis, D. Juodžbalis, A. Kazlauskas, V. Kubertavičius, J. Cryst. Growth 138, 924–933 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91, 205502–205504 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    D.C. Look, G.C. Falow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R. Dingle, Phys. Rev. Lett. 23, 579–581 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287–2294 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246–1250 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019–15027 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Y.H. Yang, X.Y. Chen, Y. Feng, G.W. Yang, Nano Lett. 7, 3879–3883 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    N.W. Wang, Y.H. Yang, G.W. Yang, J. Phys. Chem. C 113, 15480–15483 (2009)CrossRefGoogle Scholar
  23. 23.
    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821–826 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    M. Ristic, S. Music, M. Ivanda, S. Popovic, J. Alloys Compd. 397, L1–L4 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Sue, K. Kimura, K. Arai, Mater. Lett. 58, 3229–3231 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Singh, A. Kumar, D. Kaur, Opt. Mater. 30, 1316–1322 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Chen, P. Liu, C. Lu, Chem. Eng. J. 144, 509–513 (2008)CrossRefGoogle Scholar
  28. 28.
    M.S. El-Shall, D. Graiver, U. Pernisz, M.I. Baraton, Nanostruct. Mater. 6, 297–300 (1995)CrossRefGoogle Scholar
  29. 29.
    S. Alcántara I., B. Susana Soto C., L. Antonio Ortega J., R.L. Cabañas T., S. Jesús Pérez R., G. Flores C., Superficies y Vacío 21, 6–9 (2008)Google Scholar
  30. 30.
    S.D. Lee, S.-H. Nam, M.-H. Kim, J.-H. Boo, Phys. Procedia 32, 320–326 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    G. Flores-Carrasco, S. Alcántara-Iniesta, A. Sierra-Fernández, O. Milosevic, L.S. Gomez-Villalba, M.E. Rabanal, Superficies y Vacío 27, 126–132 (2014)Google Scholar
  32. 32.
    A. Rotaru, C. Constantinescu, A. Mândruleanu, P. Rotaru, A. Moldovan, K. Gyoryová, M. Dinescu, V. Balek, Thermochim. Acta 498, 81–91 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron. 14, 26–36 (2013)CrossRefGoogle Scholar
  34. 34.
    H.M. Ismail, J. Anal. Appl. Pyrolysis 21, 315–326 (1991)CrossRefGoogle Scholar
  35. 35.
    W. Xie, X. Huang, Catal. Lett. 107, 53–59 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Das, I.R. Evans, D. Khushalani, Inorg. Chem. 48, 3508–3510 (2009)CrossRefGoogle Scholar
  37. 37.
    D.M. Joseph, R. Balagopal, R.F. Hicks, L.P. Sadwick, K.L. Wang, Appl. Phys. Lett. 53, 2203–2204 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    M.O. Manasreh, J.M. Baranowski, K. Pakula, H.X. Jiang, J. Lin, Appl. Phys. Lett. 75, 659–661 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    R. Saleh, M. Munisa, W. Beyer, Thin Solid Films 426, 117–123 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    P.P. Pal, J. Manam, J. Lumin. 145, 340–350 (2014)CrossRefGoogle Scholar
  41. 41.
    I. Dugandžić, V. Lojpur, L. Mančić, M.D. Dramićanin, M.E. Rabanal, T. Hashishin, Z. Tan, S. Ohara, O. Milošević, Adv. Powder Technol. 24, 852–857 (2013)CrossRefGoogle Scholar
  42. 42.
    A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, S.M. Hosseini, Ceram. Int. 37, 393–398 (2011)CrossRefGoogle Scholar
  43. 43.
    J. Yu, C. Li, S. Liu, J. Colloid Interface Sci. 326, 433–438 (2008)CrossRefGoogle Scholar
  44. 44.
    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  45. 45.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447–5451 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 1–6 (2013)CrossRefGoogle Scholar
  47. 47.
    X. Zhao, M. Li, X. Lou, Adv. Powder Technol. 25, 372–378 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Du, M.S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin, Appl. Phys. A 76, 171–176 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, Appl. Phys. A 90, 317–321 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, L.P. Zhang, J. Appl. Phys. 83, 4389–4391 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    X.M. Fan, J.S. Lian, Q. Jiang, Z.W. Zhou, J. Mater. Sci. 42, 2678–2683 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Sung-Sik Chang, J. Korean Ceram Soc 48, 251–256 (2011)CrossRefGoogle Scholar
  53. 53.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    P.M. Ratheesh Kumar, C. Sudha Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, Mater. Sci. Eng. B 117, 307–312 (2005)CrossRefGoogle Scholar
  55. 55.
    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 5 (2009), Article ID 013502Google Scholar
  56. 56.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561–572 (2010)CrossRefGoogle Scholar
  57. 57.
    M.J. Tribelhorn, D.S. Venables, M.E. Brown, Thermochim. Acta 269–270, 649–663 (1995)CrossRefGoogle Scholar
  58. 58.
    H. Wang, C. Li, H. Zhao, J. Liu, Adv. Powder Technol. 24, 599–604 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Flores-Carrasco
    • 1
  • J. Carrillo-López
    • 1
  • R. Martínez-Martínez
    • 2
  • N. D. Espinosa-Torres
    • 1
  • L. Muñoz
    • 3
  • O. Milosevic
    • 4
  • M. E. Rabanal
    • 3
  1. 1.CIDS-ICUAP Benemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Instituto de Física y MatemáticasUniversidad Tecnológica de la MixtecaHuajuapan de LeónMexico
  3. 3.Department of Materials Science and Engineering and Chemical EngineeringUniversity Carlos III of Madrid and IAABLeganesSpain
  4. 4.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations