Advertisement

Applied Physics A

, 122:202 | Cite as

Phase diagrams of a transverse cubic nanowire with diluted surface shell

  • M. El Hamri
  • S. Bouhou
  • I. Essaoudi
  • A. Ainane
  • R. Ahuja
  • F. Dujardin
Article
Part of the following topical collections:
  1. Smart Materials and Structures

Abstract

The effective-field theory with correlations based on the probability distribution technique has been used to investigate the phase diagrams (critical and compensation temperatures) of a transverse antiferromagnetic spin-\(\frac{1}{2}\) Ising cubic nanowire with diluted surface shell. It is found that the phase diagrams of the system are strongly affected by the surface shell parameters. Indeed, two compensation points appear for certain values of Hamiltonian parameters, and the range of appearance of these latter points depends strongly on the surface shell transverse field.

Keywords

Effective Field Theory Compensation Point Surface Shell Compensation Temperature Transverse Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been initiated with the support of URAC: 08, the project RS:02(CNRST) and the Swedish Research Links programme dnr-348-2011-7264 and completed during a visit of A. A. at the Max Planck Institut für Physik Komplexer Systeme Dresden, Germany. The authors would like to thank all the organizations.

References

  1. 1.
    A. López-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogués, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1–32 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Benitez, O. Petracic, E.L. Salabas, F. Radu, H. Tüysüz, F. Schüth, H. Zabel, Evidence for core–shell magnetic behavior in antiferromagnetic Co3O4 nanowires. Phys. Rev. Lett. 101, 097206 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Keskin, N. Şarlı, B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire. Solid State Commun. 151, 1025–1030 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J.J. de Miguel, Hysteresis loops and susceptibility of a transverse Ising nanowire. J. Magn. Magn. Mater. 324, 2434–2441 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L.-M. Liu, W. Jiang, Z. Wang, H.-Y. Guan, A.-B. Guo, Magnetization and phase diagram of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 324, 4034–4042 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Yüksel, Ü. Akıncı, H. Polat, Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire. Phys. Status Solidi B 250, 196–206 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    W. Jiang, X.-X. Li, L.-M. Liu, Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E 53, 29–35 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Jiang, X.-X. Li, L.-M. Liu, J.-N. Chen, F. Zhang, Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 353, 90–98 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helical carbon nanotubes, worm-like carbon nanotubes and nanocoils at 450 C and their magnetic properties. Carbon 48, 365–376 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, X. Liu, A novel carbon nanotubes/Fe3O4 inorganic hybrid material: synthesis, characterization and microwave electromagnetic properties. J. Magn. Magn. Mater. 323, 1006–1010 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    N. Şarlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube. Phys. B 411, 12–25 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T. Kaneyoshi, Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; effects of interlayer coupling at the surface. Phys. A 392, 2406–2414 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Masrour, L. Bahmad, M. Hamedoun, A. Benyoussef, E.K. Hlil, The magnetic properties of a decorated Ising nanotube examined by the use of the Monte Carlo simulations. Solid State Commun. 162, 53–56 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    O. Canko, F. Taşkın, K. Argin, A. Erdinç, Hysteresis behavior of Blume–Capel model on a cylindrical Ising nanotube. Solid State Commun. 183, 35–40 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    E. Tirosh, G. Markovich, Control of defects and magnetic properties in colloidal HfO2 nanorods. Adv. Mater. 19, 2608–2612 (2007)CrossRefGoogle Scholar
  16. 16.
    C.P. Gräf, R. Birringer, A. Michels, Synthesis and magnetic properties of cobalt nanocubes. Phys. Rev. B 73, 2124011–2124014 (2006)Google Scholar
  17. 17.
    E. Vatansever, H. Polat, Phys. A 394, 82–89 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Yüksel, E. Aydıner, H. Polat, Thermal and magnetic properties of a ferrimagnetic nanoparticle with spin-\(\frac{3}{2}\) core and spin-1 shell structure. J. Magn. Magn. Mater. 323, 3168–3175 (2011)CrossRefGoogle Scholar
  19. 19.
    M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube. Superlattices Microstruct. 80, 151–168 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Garcia, J.M. Merino, P.E. Fernández, A. Quesada, J. de la Venta, M.L. Ruíz González, G.R. Castro, P. Crespo, J. Llopis, J.M. González-Calbet, A. Hernando, Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489–1494 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Yüksel, E. Vatansever, H. Polat, Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core–shell nanoparticle in the presence of a time dependent magnetic field. J. Phys. Condens. Matter 24, 436004 (2012)CrossRefGoogle Scholar
  22. 22.
    G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl. Phys. Lett. 82, 3053–3055 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    M.I. Shukoor, F. Natalio, M.N. Tahir, V. Ksenofontov, H.A. Therese, P. Theato, H.C. Schröder, W.E.G. Müller, W. Tremel, Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation. Chem. Commun. 44, 4677–4679 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Liu, Q. Li, T. Wang, D. Yu, Y. Li, Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. 116, 5158–5162 (2004)CrossRefGoogle Scholar
  25. 25.
    X. He, G. Song, J. Zhu, Non-stoichiometric Ni–Zn ferrite by sol–gel processing. J. Mater. Lett. 59, 1941–1944 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Singhal, A.N. Garg, K. Chandra, Evolution of the magnetic properties during the thermal treatment of nanosize BaMFeO (M = Fe, Co, Ni and Al) obtained through aerosol route. J. Magn. Magn. Mater. 285, 193–198 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Magnetic characterization of Co1−xNixFe2O4 (0 < x < 1) nanoparticles prepared by co-precipitation route. Phys. E 41, 593–599 (2009)CrossRefGoogle Scholar
  28. 28.
    V.S. Leite, W. Figueiredo, Phase diagram of uniaxial antiferromagnetic particles: field perpendicular to the easy axis. Phys. Lett. A 372, 898–903 (2008)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Magnetic properties of a diluted spin-1/2 Ising nanocube. Phys. A 443, 385–398 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    D.A. Garanin, H. Kachkachi, Surface contribution to the anisotropy of magnetic nanoparticles. Phys. Rev. Lett. 90, 65504–65507 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    H. Wang, Y. Zhou, D.L. Lin, C. Wang, Phase diagram of Ising nano-particles with cubic structures. Phys. Status Solidi b 232, 254–263 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    L. Bahmad, R. Masrour, A. Benyoussef, Nanographene magnetic properties: a Monte Carlo study. J. Supercond. Nov. Magn. 25, 2015–2018 (2012)CrossRefGoogle Scholar
  33. 33.
    B. Deviren, M. Ertaş, M. Keskin, Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire. Phys. Scr. 85, 055001 (2012)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    E. Kantar, M. Ertaş, M. Keskin, Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field. J. Magn. Magn. Mater. 361, 61–67 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Ertaş, E. Kantar, Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures. Phase Transit. 88, 567–581 (2015)CrossRefGoogle Scholar
  36. 36.
    E. Kantar, M. Ertaş, Kinetic transverse Ising nanowire system in the presence of a time-varying magnetic field. J. Supercond. Nov. Magn. (2015). doi: 10.1007/s10948-015-3351-8 zbMATHGoogle Scholar
  37. 37.
    T. Kaneyoshi, Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube; effects of surface dilution. Solid State Commun. 151, 1528–1532 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    T. Kaneyoshi, The effects of surface dilution on magnetic properties in a transverse Ising nanowire. Phys. A 391, 3616–3628 (2012)CrossRefGoogle Scholar
  39. 39.
    T. Kaneyoshi, Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: effects of interlayer coupling at the surface. J. Magn. Magn. Mater. 339, 151–156 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    T. Kaneyoshi, A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration. Phys. E 74, 531–537 (2015)CrossRefGoogle Scholar
  41. 41.
    F.C. Sá Barreto, I.P. Fittipaldy, Thermodynamical properties of the transverse Ising-model. Phys. A 129, 360 (1985)CrossRefGoogle Scholar
  42. 42.
    M. Saber, A simple approximation method for dilute Ising systems. Chin. J. Phys. 35, 577–583 (1997)Google Scholar
  43. 43.
    A. Saber, A. Ainane, F. Dujardin, M. Saber, B. Steb é, The order parameters of a spin-1 Ising film in a transverse field. J. Phys. Condens. Matter. 11, 2087 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    T. Kaneyoshi, An antiferromagnetic transverse Ising nanoisland; unconventional surface effects. J. Phys. Chem. Solids 87, 104–109 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kaneyoshi, Transverse Ising nano-systems: unconventinal surface effects. J. Phys. Chem. Solids 81, 66–73 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    T. Kaneyoshi, Unique magnetic properties of an Ising nanowire with a spin glass like disorder at the surface. Phys. B 462, 34–39 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    L. Néel, Propriétés magnétiques des ferrites. Ferrimagnetisme et antiferromagnetisme. Ann. Phys. (Paris) 3, 137–198 (1948)Google Scholar
  48. 48.
    J. Strečka, Exact results of a mixed spin-\( \frac{1}{2}\) and spin-S Ising model on a bathroom lite (4–8) lattice: effect of uniaxial single-ion anisotropy. Phys. A 360, 379–390 (2006)CrossRefGoogle Scholar
  49. 49.
    T.K. Hatwar, D.J. Genova, R.H. Victoria, Double compensation point media for direct overwrite. J. Appl. Phys. 75, 6858 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. El Hamri
    • 1
  • S. Bouhou
    • 1
  • I. Essaoudi
    • 1
  • A. Ainane
    • 1
    • 2
    • 3
  • R. Ahuja
    • 3
  • F. Dujardin
    • 4
  1. 1.Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, Physics Department, Faculty of SciencesUniversity of Moulay IsmailMeknesMorocco
  2. 2.Max-Planck-Institut für Physik Complexer SystemeDresdenGermany
  3. 3.Condensed Matter Theory Group, Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  4. 4.Laboratoire de Chimie et Physique (LCP-A2MC)Institut de Chimie, Physique et Matériaux (ICPM)MetzFrance

Personalised recommendations