Applied Physics A

, 122:204 | Cite as

Adjustable passivation of SiO2 trap states in OFETs by an ultrathin CVD deposited polymer coating

  • Milan Alt
  • Christian Melzer
  • Florian Mathies
  • Kaja Deing
  • Gerardo Hernandez-Sosa
  • Uli Lemmer
Article

Abstract

Trap state passivation at the interface of oxides with organic materials is crucial for the performance of electronic devices such as FETs or LEDs. Commonly used trap passivation layers such as octadecyltrichlorosilane or hexamethyldisilazane generate a highly hydrophobic surface, severely limiting the range of possible solvents for a subsequent layer deposition from solution. In this study, we investigate the trap passivation functionality of parylene C, known for its excellent encapsulation properties and chemical inertness. Parylene C coatings allow for a broad range of solvents to be used in the subsequent layer deposition. We observed a distinct gate bias stress effect in OFET devices due to a little, but constant seepage of charge through parylene C. The permeability of parylene C can be adjusted by thickness and thermal curing at moderate temperatures (100 °C).

Supplementary material

339_2016_9678_MOESM1_ESM.pdf (9 kb)
SI Figure 1. Wetting envelopes after Owens–Wendt–Rabel–Kaelble of pristine SiO2, parylene C and a common surface passivation layer OTS in comparison. (PDF 9 kb)
339_2016_9678_MOESM2_ESM.pdf (3.4 mb)
SI Figure 2. Atomic-force microscopy of the parylene surface. a) Parylene C surface; b) edge between SiO2 surface and parylene C film; c) profile from SiO2 to parylene C surface. The ridge at the edge is caused by partially removing the parylene C mechanically. (PDF 3491 kb)
339_2016_9678_MOESM3_ESM.pdf (270 kb)
SI Figure 3. Influence of the parylene C layer thickness on the passivation properties. Left: ~20 nm parylene C layer thickness; right: ~40 nm parylene C layer thickness; top: absolute drain current; bottom: transconductance gm. (PDF 270 kb)
339_2016_9678_MOESM4_ESM.pdf (120 kb)
SI Figure 4. Extended temperature behavior. (a) Normalized gm with increasing T, as shown in main text; (b) subtracted gm of OFET without and with SiO2 layer; (c) trend of integrated intensity and maximum value of b) with temperature. (PDF 120 kb)

References

  1. 1.
    H.S. Tan, T. Cahyadi, Z.B. Wang, A. Lohani, Z. Tsakadze, S. Zhang, F.R. Zhu, S.G. Mhaisalkar, IEEE Electron Device Lett. 29, 698 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Y.G. Ha, S. Jeong, J. Wu, M.-G.G. Kim, V.P. Dravid, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 132, 17426 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Song, W. Yang, Y. Jung, S. Jeong, J. Moon, J. Mater. Chem. 22, 21265 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.B. Yoo, J.H. Park, K.H. Lee, H.W. Lee, K.M. Song, S.J. Lee, H.K. Baik, J. Mater. Chem. C 1, 1651 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Moon, H. Seong, W. Shin, W. Park, M. Kim, Nat. Mater. 1, 1–8 (2015) Google Scholar
  6. 6.
    S.C. Lim, S.H. Kim, J.H. Lee, M.K. Kim, D.J. Kim, T. Zyung, Synth. Met. 148, 75 (2005)CrossRefGoogle Scholar
  7. 7.
    H.C. Koydemir, H. Kulah, C. Ozgen, J. Microelectromech. Syst. 23, 298 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Appl. Phys. Lett. 102, 023112 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hesjedal, Appl. Phys. Lett. 98, 133106 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J. Hsu, S. Kammer, E. Jung, A. Richard, in Third International Conferences Multi-Material Micro Manufacturing, (2007), pp. 355–358Google Scholar
  11. 11.
    J.-M. Hsu, L. Rieth, R.A. Normann, P. Tathireddy, F. Solzbacher, IEEE Trans. Biomed. Eng. 56, 23 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Hassler, R.P. Von Metzen, P. Ruther, T. Stieglitz, J. Biomed. Mater Res. Part B Appl. Biomater. 93, 266 (2010)Google Scholar
  13. 13.
    T.-N.N. Chen, D.-S.S. Wuu, C.-C.C. Wu, C.-C.C. Chiang, Y.-P.P. Chen, R.-H.H. Horng, Plasma Process. Polym. 4, 180 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Jakabovič, J. Kováč, M. Weis, D. Haško, R. Srnánek, P. Valent, R. Resel, Microelectron. J. 40, 595 (2009)CrossRefGoogle Scholar
  15. 15.
    D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969)CrossRefGoogle Scholar
  16. 16.
    D.H. Kaelble, J. Macromol. Sci. Part C Polym. Rev. 6, 85 (1971)CrossRefGoogle Scholar
  17. 17.
    I.C. Chen, S. Holland, C. Hu, J. Appl. Phys. 61, 4544 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ogawa, N. Shiono, M. Shimaya, Appl. Phys. Lett. 56, 1329 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    D. Kumaki, T. Umeda, S. Tokito, Appl. Phys. Lett. 92, 093309 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Tardy, M. Erouel, Microelectron. Reliab. 53, 274 (2013)CrossRefGoogle Scholar
  21. 21.
    E.M. Davis, N.M. Benetatos, W.F. Regnault, K.I. Winey, Y.A. Elabd, Polymer (Guildf). 52, 5378 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Hartstein, Appl. Phys. Lett. 38, 631 (1981)ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Mirji, Surf. Interface Anal. 38, 158 (2006)CrossRefGoogle Scholar
  24. 24.
    M.-H. Jung, H.-S. Choi, Korean J. Chem. Eng. 26, 1778 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, M. Lieberman, Langmuir 19, 1159 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Milan Alt
    • 1
    • 2
    • 4
  • Christian Melzer
    • 3
  • Florian Mathies
    • 1
    • 2
  • Kaja Deing
    • 4
  • Gerardo Hernandez-Sosa
    • 1
    • 2
  • Uli Lemmer
    • 1
    • 2
    • 5
  1. 1.Light Technology InstituteKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.InnovationLab GmbHHeidelbergGermany
  3. 3.Centre for Advanced Materials, Kirchhoff-Institut für PhysikRuprecht-Karls-UniversitätHeidelbergGermany
  4. 4.Merck KGaADarmstadtGermany
  5. 5.Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations