Applied Physics A

, 122:135 | Cite as

Metal hydrides used as negative electrode materials for Li-ion batteries

  • Sabrina Sartori
  • Fermin Cuevas
  • Michel Latroche
Invited Paper
Part of the following topical collections:
  1. Hydrogen-based energy storage


Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.


Hydride Negative Electrode Metal Hydride Reversible Capacity MgH2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



IEA HIA network (Task 32) is greatly acknowledged for providing opportunities for collaborations and fruitful discussions.


  1. 1.
    Y. Oumellal, A. Rougier, G.A. Nazri, J.-M. Tarascon, L. Aymard, Nat. Mater. 7, 916 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Brutti, G. Mulas, E. Piciollo, S. Panero, P. Reale, J. Mater. Chem. 22, 25495 (2012)CrossRefGoogle Scholar
  3. 3.
    W. Zaïdi, Y. Oumellal, J.P. Bonnet, J. Zhang, F. Cuevas, M. Latroche, J.L. Bodet, L. Aymard, J. Power Sources 196, 2854 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    N. Hanada, A. Kamura, H. Suzuki, K. Takai, T. Ichikawa, Y. Kojima, J. Alloys Compd. in Proceedings of 12th International Symposium Metal-Hydrogen Systems, Fundamentals and Applications MH2010, vol. 509, Supplement 2 (2011) p. S584Google Scholar
  5. 5.
    S. Ikeda, T. Ichikawa, K. Kawahito, K. Hirabayashi, H. Miyaoka, Y. Kojima, Chem. Commun. 49, 7174 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Oumellal, C. Zlotea, S. Bastide, C. Cachet-Vivier, E. Leonel, S. Sengmany, E. Leroy, L. Aymard, J.-P. Bonnet, M. Latroche, Nanoscale 6, 14459 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Oumellal, A. Rougier, J.-M. Tarascon, L. Aymard, J. Power Sources 192, 698 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Oumellal, W. Zaïdi, J.-P. Bonnet, F. Cuevas, M. Latroche, J. Zhang, J.-L. Bobet, A. Rougier, L. Aymard, Int. J. Hydrog. Energy 37, 7831 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Huang, L. Aymard, J.-P. Bonnet, J. Mater. Chem. A 3, 15091 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Cuevas, D. Korablov, M. Latroche, Phys. Chem. Chem. Phys. 14, 1200 (2012)CrossRefGoogle Scholar
  11. 11.
    J.A. Teprovich, J. Zhang, H. Colon-Mercado, F. Cuevas, B. Peters, S. Greenway, R. Zidan, M. Latroche, J. Phys. Chem. C 119, 4666 (2015)CrossRefGoogle Scholar
  12. 12.
    C. Lartigue, A. Percheron-Guégan, J.-C. Achard, F. Tasset, J. Common. Met. 75, 23 (1980)CrossRefGoogle Scholar
  13. 13.
    M. Bououdina, Y. Oumellal, L. Dupont, L. Aymard, H. Al-Gharni, A. Al-Hajry, T.A. Maark, A. De Sarkar, R. Ahuja, M.D. Deshpande, Z. Qian, A.B. Rahane, Mater. Chem. Phys. 141, 348 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Zaïdi, J.-P. Bonnet, J. Zhang, F. Cuevas, M. Latroche, S. Couillaud, J.-L. Bobet, M.T. Sougrati, J.C. Jumas, L. Aymard, Int. J. Hydrog. Energy 38, 4798 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Provost, J. Zhang, W. Zaidi, V. Paul-Boncour, J.-P. Bonnet, F. Cuevas, S. Belin, L. Aymard, M. Latroche, J. Phys. Chem. C 118, 29554 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, W. Zaïdi, V. Paul-Boncour, K. Provost, A. Michalowicz, F. Cuevas, M. Latroche, S. Belin, J.-P. Bonnet, L. Aymard, J. Mater. Chem. A 1, 4706 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Silvestri, S. Forgia, L. Farina, D. Meggiolaro, S. Panero, A. La Barbera, S. Brutti, P. Reale, ChemElectroChem 2, 877 (2015)CrossRefGoogle Scholar
  18. 18.
    T.H. Mason, X. Liu, J. Hong, J. Graetz, E.H. Majzoub, J. Phys. Chem. C 115, 16681 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Dornheim, S. Doppiu, G. Barkhordarian, U. Bösenberg, T. Klassen, O. Gutfleisch, R. Bormann, Scr. Mater. 56, 841 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Selvam, B. Viswanathan, C.S. Swamy, V. Srinivasan, Int. J. Hydrog. Energy 11, 169 (1986)CrossRefGoogle Scholar
  21. 21.
    M. Yoshida, F. Bonhomme, K. Yvon, P. Fischer, J. Alloys Compd. 190, L46 (1993)CrossRefGoogle Scholar
  22. 22.
    A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Ph. Diagr. 6(3), pp. 238–244 (1985)Google Scholar
  23. 23.
    J. Zhang, F. Cuevas, W. Zaïdi, J.-P. Bonnet, L. Aymard, J.-L. Bobet, M. Latroche, J. Phys. Chem. C 115, 4971 (2011)CrossRefGoogle Scholar
  24. 24.
    F.E. Pretzel, G.N. Rupert, C.L. Mader, E.K. Storms, G.V. Gritton, C.C. Rushing, J. Phys. Chem. Solids 16, 10 (1960)ADSCrossRefGoogle Scholar
  25. 25.
    F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R.-G. Zhang, L.-J. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y.-M. Zhu, J. Graetz, J. Am. Chem. Soc. 133, 18828 (2011)CrossRefGoogle Scholar
  26. 26.
    L. George, S.K. Saxena, Int. J. Hydrog. Energy 35, 5454 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Université de Paris Est, ICMPE, UMR7182CNRS-UPECThiaisFrance

Personalised recommendations