Advertisement

Applied Physics A

, 122:508 | Cite as

Effects of pH value on growth morphology of LaPO4 nanocrystals: investigated from experiment and theoretical calculations

  • Xiaoyan Wang
  • Luo Zhang
  • Zhongju Zhang
  • Xin Wang
Article
  • 158 Downloads

Abstract

The morphologies of the materials have strong effects on their performance in particular applications. In our experiment, we synthesized LaPO4 successfully by the typical hydrothermal method in acidic conditions. The morphologies, preferred orientation and crystal facets are characterized by scanning electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy. Combining the experimental findings, the surface energies of two major surfaces, (110) and (031) planes, were calculated using density functional theory methods. The theoretical calculations on the slabs surface energies were performed to simulate the shape of nanoparticles by the Wulff construction. The experimental results indicate that LaPO4 prepared in this work shows rodlike structure. The equilibrium shape of clava with large length–diameter ratio is achieved. With increasing hydrogen ion concentration in solutions, the morphologies present as sticks and their length–diameter ratios tend bigger, which is consistent with experimental results to a great extent.

Keywords

HRTEM Acid Condition LiFePO4 Diameter Ratio Lanthanum Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the National Science Function of China (No. 51172217). We are grateful for the assistance during the measurement at Qingdao Institute of Biomass Energy and Bioprocess Technology.

References

  1. 1.
    L.A. Boatner, Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev. Mineral. Geochem. 48, 87–121 (2002)CrossRefGoogle Scholar
  2. 2.
    J. García-Sevillano, E. Cantelar, A. Justo, M. Ocaña, F. Cussó, LaPO4: Er microspheres with high NIR luminescent quantum yield. Mater. Chem. Phys. 138, 666–671 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Phadke, J.C. Nino, M.S. Islam, Structural and defect properties of the LaPO4 and LaP5O14-based proton conductors. J. Mater. Chem. 22, 25388–25394 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Ramesh, J.E. Zheng, E.G.Y. Ling, Y.-F. Han, A. Borgna, Synthesis, characterization, and catalytic activity of uniformly crystalline LaPO4 nanofiber catalysts for ethanol dehydration. J. Phys. Chem. C 113, 16530–16537 (2009)CrossRefGoogle Scholar
  5. 5.
    Q. Zheng, X. Wang, J. Tian, R. Kang, Y. Yin, Synthesis and characterization of LaPO4 powder heat treated at various temperatures. Mater. Chem. Phys. 122, 49–52 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Kim, L. Martinelli, K. Lahlil, J.P. Boilot, T. Gacoin, J. Peretti, Optimized combination of intrinsic and form birefringence in oriented LaPO4 nanorod assemblies. Appl. Phys. Lett. 105, 061102–061105 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. García-Sevillano, E. Cantelar, F. Cussó, M. Ocaña, Up-conversion in Er3+/Yb3+ co-doped LaPO4 submicron-sized spheres. Opt. Mater. 41, 104–107 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Yang, H. You, Y. Huang, G. Jia, Y. Song, N. Guo, K. Liu, Y. Zheng, H. Zhang, Facile synthesis and luminescent properties of flower-like LaPO4:Ln3+ (Ln = Ce, Tb) hierarchical architectures. CrystEngComm 12, 2865–2870 (2010)CrossRefGoogle Scholar
  9. 9.
    M.J. Fisher, W. Wang, P.K. Dorhout, E.R. Fisher, Synthesis of LaPO4: Eu nanostructures using the sol–gel template method. J. Phys. Chem. C 112, 1901–1907 (2008)CrossRefGoogle Scholar
  10. 10.
    A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Narayanan, C. Burda, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)CrossRefGoogle Scholar
  12. 12.
    V.M. Longo, L. Gracia, D.G. Stroppa, L.S. Cavalcante, M. Orlandi, A.N.J. Ramirez, E.R. Leite, J. Andrés, A. Beltrán, J.A. Varela, A joint experimental and theoretical study on the nanomorphology of CaWO4 crystals. J. Phys. Chem. C 115, 20113–20119 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Duan, C. Wei, Y. Liu, C. Pei, A molecular dynamics simulation of solvent effects on the crystal morphology of HMX. J. Hazard. Mater. 174, 175–180 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Kim, H. Lee, S. Kang, First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2. J. Mater. Chem. 25, 12874–12881 (2012)CrossRefGoogle Scholar
  15. 15.
    C.Q. Zhuang, H. Yue, H.J. Zhang, Molecular simulation methods and materials studio applications to macromolecular material. Plastics 4, 81–84 (2010)Google Scholar
  16. 16.
    X. Wang, X. Wang, X. Zheng, L. Zhang, Experimental and theoretical study on structural and electronic properties of LaPO4:Ln3+ (Ln = Sm, Gd and Tb). J. Alloys Compd. 632, 269–273 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Mullica, W. Milligan, D.A. Grossie, G. Beall, L. Boatner, Experimental and theoretical study on structural and electronic properties of LaPO4:Ln3+ (Ln = Sm, Gd and Tb). Inorg. Chim. Acta 95, 231–236 (1984)CrossRefGoogle Scholar
  18. 18.
    C. Liu, X. Wang, The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method. Appl. Phys. A Mater. 109, 279–284 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. Romano, On Wulff’s law about equilibrium configurations of crystals. Int. J. Eng. Sci. 27, 1135–1142 (1989)CrossRefzbMATHGoogle Scholar
  20. 20.
    P. Li, X. Zhao, Y. Li, H. Sun, L. Sun, X. Cheng, X. Hao, W. Fan, Effects of surface chemistry on the morphology transformation of ZnWO4 nanocrystals: investigated from experiment and theoretical calculations. CrystEngComm 14, 920–928 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett. 12, 5632–5636 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. Savchyn, I. Karbovnyk, V. Vistovskyy et al., Vibrational properties of LaPO4 nanoparticles in mid-and far-infrared domain. J. Appl. Phys. 112(12), 124309 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaoyan Wang
    • 1
  • Luo Zhang
    • 2
  • Zhongju Zhang
    • 1
  • Xin Wang
    • 2
  1. 1.College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Institute of Material Science and EngineeringOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations